
Eseye-enabled Cinterion®
PLS62-W Wireless Module
Developer Guide
Document: 8589 v1.9

Copyright
Copyright 2021 Eseye Ltd. All rights reserved.

You may not reproduce or use this document or any portion thereof without prior written permission
of Eseye Ltd. Eseye Ltd retains the right to change this document or related product specifications and
descriptions, at any time, without notice. Eseye Ltd makes no warranty for the use of this document
and assumes no responsibility for any errors that may appear in the document, nor does it make a
commitment to update the information contained herein. For the most current product information,
please visit www.eseye.com.

Eseye® and its logos, Eseye Intelligently Connected® and Hera 300™ are trademarks of Eseye Ltd in the
United Kingdom and/or other countries. All other marks and names mentioned herein may be claimed
as the property of others.

Last updated: 02 July 2021

ii Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Contents
About this guide v

Extra reading v

Standards and conventions vi

About the Eseye-enabled Cinterion® PLS62-W Wireless Module 1

What do I need? 1

How connectivity is established with AWS 1

Attaching to the Intelligent Cloud Connect 3

Configuring your system to send and receive data 4

Integrating with AWS Marketplace using AnyNet IRIS 5

Getting Started: preparing the cloud 6

Preparing the cloud overview 6

Subscribing to AnyNet Cellular Connectivity for AWS IoT 6

Viewing the AnyNet IRIS Welcome page 8

About the required AWS IAM user for AnyNet IRIS 9

Recommended reading 9

Creating a dedicated IAM user account for AnyNet IRIS 9

Required IAM Managed Policies 11

Attaching IAM policies to an existing user 12

Installing AnyNet IRIS 16

Installing AnyNet IRIS for Windows 10 16

Installing AnyNet IRIS for macOS 16

Configuring AnyNet IRIS 17

Creating a thing in AWS IoT Core 19

Establishing a cellular connection on the Intelligent Cloud Connect 21

Provisioning the Cinterion® PLS62-W Wireless Module 22

Limiting the AWS IoT Core policy 24

Sending data from your thing to the cloud 25

Sending data from the cloud to your thing 28

Interacting with the AWS IoT shadow 30

General AT Commands for the Cinterion® PLS62-W Wireless Module 31

AT Command syntax 32

Types of AT Commands and responses 32

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9 iii

ETM Management AT commands 33

About the Eseye Telemetry Module 33

ETMINFO – displays information about the current ETM application and device 34

ETMRESET – reboot the Intelligent Cloud Connect 35

ETMSTATE – check current state 36

+ETM Unsolicited Response Codes (URCs) 37

MQTT telemetry AT�commands 38

EMQ – publish a message to singletopic 38

EMQPERSIST – report a set value to the device shadow 39

EMQPUBOPEN – create a publish message topic 41

EMQPUBCLOSE – remove a publish message topic 43

EMQPUBLISH – publish data to a message topic 44

EMQSUBOPEN – create a subscribe message topic 45

EMQSUBCLOSE – cancel a subscription to a message topic 47

+EMQ Unsolicited Response Codes (URCs) 48

Using the Cinterion® PLS62-W Wireless Module configuration file 50

Data security 55

AWS security compliance 55

Processing updates 55

Updating the modem software 56

Installing the USB drivers and Module Exchange Suite (MES) 56

Preparing the Cinterion® PLS62-W Wireless Module for the latest Eseye Updater 60

Downloading the software update onto the modem 61

Installing the latest Eseye Updater 62

Installing the latest software update 63

Uninstalling the Module Exchange Suite 64

Updating the modem firmware using AWS IoT jobs 65

Creating a JSON job description file 65

Example job document 66

Creating an AWS IoT custom job 66

Unsubscribing from AnyNet Cellular Connectivity for AWS IoT 68

iv Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

About this guide
This guide is designed to help you connect one or more things to Amazon Web Services (AWS) for data
collection, storage and analysis purposes, using the Eseye-enabled Cinterion® PLS62-W Wireless
Module. You will also learn how to control the modem using AT�commands.

This guide uses the plug and play Intelligent Cloud Connect as a worked example. The Intelligent Cloud
Connect contains the Cinterion® PLS62-W Wireless Module, and provides a useful proof of concept.

We assume that your thing is designed to transmit data over cellular networks. You must have
knowledge of AT command and cellular modem usage for data communications.

If you want to connect with other cloud providers, or to a private cloud, speak to your Account
Manager.

Extra reading
For general information, see the online help: https://docs.eseye.com/Content/Home.htm

You may prefer to use the Quick Start Guide to connect to the cloud. For more information, see:

8582 Intelligent Cloud Connect Quick Start Guide (PDF)

For information about the Intelligent Cloud Connect smart terminal, see
https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/iot-
connectivity/products/iot-products/pls62t-w-gateway.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9 v

About this guide

Standards and conventions
This guide uses consistent visual cues and standard text styles to help you locate and interpret
information easily.

Style Description

Note
Extra information or a recommendation related to the current topic.

Tip
Good-to-know information that helps users complete a procedure or
understand a topic.

Warning
Information that alerts the user about significant or critical actions or
outcomes.

Title names Window or section names, denoting a title, appear in italics.

Field or button name Element names in a user interface, for example fields and buttons,
appear in bold.

Ctrl+X; Ctrl+click A key combination with a plus sign separating two key names or a key
name and a mouse action, indicates that you hold down the first key
while pressing the second key or performing the mouse action.

Cross reference Title and
page

Cross references appear in italics, for example: For more information,
see Copyright on page�ii. Select the cross reference to view it.

Hyperlinks Underlined cross references are hyperlinks to electronic forms of the
document. Select the hyperlink to open the cross reference.

AT�Commands

Commands Command formats are displayed in monospaced typeface.

<Parameter> Angle brackets enclose the AT Command parameter, for example
<topic>. The brackets do not appear in the command line.

"ParameterString" Quotation marks enclose parameter strings.

CommandValue Italics in a command depicts values or examples that need replacing
with your specific parameters.

[CommandOptionalEntry] Square brackets display optional entries.

ATCommandResponse Returned responses to AT�Commands are displayed in monospaced
bold typeface.

<ASCIICHARACTERS> Returned ASCII characters are in uppercase.

vi Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

About this guide

About the Eseye-enabled Cinterion®
PLS62-W Wireless Module
The Eseye-enabled Cinterion® PLS62-W Wireless Module Intelligent Cloud Connect smart terminal
enables you to simply, easily and securely connect your thing to Amazon Web Services (AWS) from
anywhere in the world over cellular networks. This enables you to remotely extract data from your
thing for a variety of industrial and commercial applications, such as metering, monitoring,
transportation, security, and so on.

Eseye ensures that your thing has near constant connectivity to a cellular network. Connecting to AWS
provides a flexible and scalable cloud service solution for your internet of things enterprise.

What do I need?
• Thales Cinterion® PLS62-W Wireless Module with seamless fallback to 2G/3G – enables a secure

connection to AWS after the Eseye security and identity information is installed

• Single Eseye SIM with multi-IMSI capability – enables worldwide wireless connectivity

• As a worked example, Eseye uses the Intelligent Cloud Connect, featuring an Eseye-enabled
PLS62T-W modem.

• A basic understanding of serverless applications running on AWS. Training courses are available
here: https://aws.amazon.com/

How connectivity is established with AWS
Eseye uses the Message Queue Telemetry Transport (MQTT) protocol to connect one or more things
(MQTT clients) with AWS IoT Core (the MQTT broker).

You use an AT-command interface to send and receive telemetry data to and from the cloud service.
The Cinterion® PLS62-W Wireless Module buffers publish data until it is delivered to the cloud. For
information about the Eseye Telemetry Module, see About the Eseye Telemetry Module on page�33.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9 1

About the Eseye-enabled Cinterion® PLS62-W Wireless Module

The Eseye-enabled Cinterion® PLS62-W Wireless Module uses the following:

• MQTT URL – the AWS Custom Endpoint used to establish a connection between a thing and
AWS IoT Core, for example:

a2efgh321joea3-ats.iot.eu-west-1.amazonaws.com

• Transport Layer Security (TLS) – for the IP connection, established using the certificates from the
SIM

For more information, see Data security on page�55.

• Publish and subscribe topics – preconfigured in the Eseye Telemetry Module (ETM) application
using AT�commands

• AWSthingname – appended to the topics as a suffix to uniquely identify the thing in AWS IoT
Core

2 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

About the Eseye-enabled Cinterion® PLS62-W Wireless Module

Attaching to the Intelligent Cloud Connect
Attach to the Intelligent Cloud Connect over USB, or the DB9 RS-232 serial connector.

If you are testing a single unit, we recommend that you use a terminal emulator to execute the
AT commands, for example PuTTY or Tera Term.

Serial port settings
Change the port settings using Device Manager, and ensure you also adjust the serial port settings in
the terminal emulator.

Serial port setting Default value
Baud rate 115200

Data Bits �8

Parity None

Stop Bits 1

Flow Control None

For information about installing the drivers you need for the USB connection, see Installing the USB
drivers and Module Exchange Suite (MES) on page�56.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
3

Attaching to the Intelligent Cloud Connect

Configuring your system to send and
receive data
Before you can send and receive data between your thing and the cloud, you need to:

1. Prepare the cloud.

For more information, see Getting Started: preparing the cloud on page�6.

2. Install AnyNet IRIS.

For more information, see Installing AnyNet IRIS on page�16.

3. Create your thing in AWS IoT Console.

For more information, see Creating a thing in AWS IoT Core on page�19.

4. Connect the Cinterion® PLS62-W Wireless Module to a cellular network.

For more information, see Establishing a cellular connection on the Intelligent Cloud Connect on
page�21.

5. Provision the Cinterion® PLS62-W Wireless Module.

For more information, see Provisioning the Cinterion® PLS62-W Wireless Module on page�22.

6. Use a terminal emulator to send commands to the Cinterion® PLS62-W Wireless Module.

For information about setting up the terminal emulator, see Attaching to the Intelligent Cloud
Connect on page�3.

7. Test that you can send data from your thing to the cloud.

For more information, see Sending data from your thing to the cloud on page�25 .

8. Test that you can send data from the cloud to your thing.

For more information, see Sending data from the cloud to your thing on page�28.

9. Your system is now ready. Use AT commands to configure how data is sent and received
between the cloud and the modem.

For more information, see General AT Commands for the Cinterion® PLS62-W Wireless Module
on page�31.

4 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Configuring your system to send and receive data

Integrating with AWS Marketplace using AnyNet
IRIS
AnyNet IRIS enables you to easily and securely deploy required IAM roles and policies to selected
AWS�regions for integration with AWS Marketplace.

AnyNet IRIS is supported on the following operating systems:

• Windows 10 version 1903 and above

• macOS 10.14 and above

For information about the IAM managed policies you need to use the AnyNet Cellular
Connectivity for AWS IoT SaaS product, see Required IAM Managed Policies.

For information about the IAM permissions you need to use the AnyNet Cellular Connectivity for
AWS IoT SaaS product, see Required IAM permissions.

After deploying resources, you can use AnyNet IRIS to review the status of your things in each region in
a specified time period, view the deployed Cloud Formation template contents, as well as manage
configuration and updates.

For more information, see Reviewing thing connectivity using AnyNet IRIS.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
5

Integrating with AWS Marketplace using AnyNet IRIS

Getting Started: preparing the cloud

Before you begin
Ensure your system supports the AnyNet IRIS installation. For more information, see Installing
AnyNet IRIS on page�16.

Preparing the cloud overview
In order to integrate your things with AWS, you need to perform the following steps:

1. Sign up for an Amazon Web Services (AWS) account, or log into an existing account:
https://aws.amazon.com

For instructions, see: How do I create and activate a new AWS account?

2. Subscribe to AnyNet Cellular Connectivity for AWS IoT.

For more information, see Subscribing to AnyNet Cellular Connectivity for AWS IoT below.

3. Within your AWS root account, create a mandatory dedicated AWS IAM user account for
AnyNet IRIS.

For more information, see Creating a dedicated IAM user account for AnyNet IRIS on page�9.

4. Install and configure AnyNet IRIS.

For more information, see Installing AnyNet IRIS on page�16 .

Subscribing to AnyNet Cellular Connectivity for AWS IoT
Use AWS Marketplace to subscribe to AnyNet Cellular Connectivity for AWS IoT, which will enable you
to connect your thing to AWS IoT Core.

1. Log into your AWS account.

2. Go to AnyNet Cellular Connectivity for AWS IoT.

AnyNet Cellular Connectivity for AWS IoT opens in the AWS Marketplace.

6 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Getting Started: preparing the cloud

3. Select Continue to Subscribe.

The service pricing options are displayed.

4. Select Subscribe.

A Congratulations! You are now subscribed! message appears.

5. Select Set Up Your Account.

The AnyNet Cellular Connectivity for AWS IoT Welcome page appears.

Make a note of your Customer ID. Leave this window open to refer back to it when you
set up the IAM user account, and also when you install and configure AnyNet IRIS.

If you previously subscribed to AnyNet Cellular Connectivity for AWS IoT and did not
download the AnyNet IRIS executable, then you will need to return to the AnyNet Cellular
Connectivity for AWS IoT Welcome page. For more information, see Viewing the AnyNet IRIS
Welcome page on the next page.

Next, set up an AWS IAM user account with specific IAM permissions. For more information, see
Creating a dedicated IAM user account for AnyNet IRIS on page�9 .

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
7

Getting Started: preparing the cloud

Viewing the AnyNet IRIS Welcome page
You may need to return to the AnyNet IRIS Welcome page to view your Customer ID, or to complete
downloading the AnyNet IRIS executable.

To find the Welcome page:

1. Navigate to AWS Marketplace: https://aws.amazon.com/marketplace.

2. Sign into the account you used to subscribe to AnyNet Cellular Connectivity for AWS IoT.

3. In the top right corner, select your logged-in identity.

4. Select Your Marketplace Software from the drop-down menu.

An AWS warning may appear about needing License Manager SLR to see license
entitlements. This does not affect the AnyNet Cellular Connectivity for AWS IoT
installation.

5. Select the AnyNet Cellular Connectivity for AWS IoT subscription.

6. Select the Read more on AWS Marketplace link.

7. Select Continue to Subscribe.

8. In the Having issues signing up for your product? box, select click here to view the Welcome
page.

Make a note of the CustomerID to help you configure AnyNet IRIS.

9. If required, select the relevant download.

For more information, see Getting Started: preparing the cloud on page�6.

8 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Getting Started: preparing the cloud

About the required AWS IAM user for AnyNet IRIS
The AnyNet Cellular Connectivity for AWS IoT service integrates with the IoT resources within your
AWS account to perform essential functions, such as updating an AWSthing Shadow document. You
enable access to these functions by setting up a dedicated IAM user with specific permissions within
your AWS account. You will use this IAM user to configure AnyNet IRIS.

The IAM�permissions also enable the service to create a Foundation CloudFormation stack that is used
to distribute required resources to the AWS regions you select using AnyNet IRIS. The Foundation stack
creates an IAM role – AnyNetSecureTrustRole – that is responsible for establishing required cross-
account access. For information about cross-account access, see:

Providing access to AWS accounts owned by third parties

Recommended reading
For information about AWS security best practices, see: Security best practices in IAM

To learn how to create customer managed policies, see: IAM Tutorial: Create and attach your first
customer managed policy

Creating a dedicated IAM user account for AnyNet IRIS

Do not use the AWS account root to set up the required IAM permissions. For more
information, see AWS account root user.

To create an IAM user account:

1. Ensure you have signed in to AWS Management Console.

2. Navigate to IAM Services using the following URL: https://console.aws.amazon.com/iam/

3. In the left-hand navigation menu, select Users.

Any previously created IAM users are listed in the right-hand pane.

4. Select Add User.

5. Type the user name for the new user.

This is the sign-in name for AWS, for example: anynetuser.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
9

About the required AWS IAM user for AnyNet IRIS

6. Alongside Access type, select the Programmatic access check box only.

7. Select Next: Permissions.

We will add permissions later.

8. Select Next: Tags.

Add any required tags according to your operational policies.

9. Select Next: Review to review your choices.

10. Select Create user to create the IAM user.

The Access key ID and Secret access key are displayed. AnyNet IRIS will use these security
credentials to perform necessary requests against your AWS account.

You can view and download the Secret access key once only. If you forget the Secret
access key, you will need to regenerate it on your AWS user account. For more
information, see: AWS security credentials - programmatic access.

11. Click Download.csv to store the keys locally on your computer.

12. Select Close.

Next, you must attach the required policies to this IAM�user account.

10 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

About the required AWS IAM user for AnyNet IRIS

Required IAM Managed Policies
The AnyNet Cellular Connectivity for AWS IoT service and AnyNet IRIS app require the following AWS
Managed Policies.

When you attach these policies to the IAM user, you will also create an inline policy to deny all
user and organization related actions. For more information, see Attaching IAM policies to an
existing user on the next page.

Ensure that enabling access to these policies does not breach your IT security procedures.

AmazonEC2ReadOnlyAccess

Permits Eseye to determine which AWS Regions you have enabled, using some EC2
read-only commands.

AWS requires its customers to opt in to any of the AWS Regions launched after 20
March 2019. For more information, see: Setting permissions to enable accounts
for upcoming AWS Regions.

AmazonEventBridgeFullAccess

Enables AnyNet IRIS to use Amazon EventBridge to notify the Activation service
when AWS IoT things are created or deleted.

AmazonS3FullAccess

Enables CloudFormation template retrieval and CloudTrail S3 bucket creation.

AWSCloudFormationFullAccess

Required for both the Foundation stack and the resource stacks that are created in
the AWS Regions you specify using AnyNet IRIS.

AWSCloudTrail_FullAccess

Enables delivery of AWS API Call via CloudTrail. AWS API Call notifies AnyNet IRIS
of specific AWS IoT events.

AWSIoTFullAccess

Enables AnyNet IRIS to access multiple required resources within AWS IoT Core.

AWSIoTLogging

Allows creation of Amazon CloudWatch Log groups and streaming logs to the
groups.

IAMFullAccess

Enables AnyNet IRIS to invoke the policy simulator API to determine whether the
user has sufficient permissions to use the AnyNet IRIS app and AnyNet Cellular
Connectivity for AWS IoT service. Additionally, it enables IAM role creation and
policy attachment. For more information, see: Testing IAM policies with the IAM
policy simulator.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
11

Required IAM Managed Policies

Attaching IAM policies to an existing user
You must attach policies to the dedicated IAM user in order to grant specific permissions, which will
allow AnyNet IRIS to function.

For detailed information about each policy, see Required IAM Managed Policies.

1. Ensure you remain signed into AWS as the root user.

2. Navigate to IAM Services using the following URL:

https://console.aws.amazon.com/iam/

3. In the left-hand navigation menu, select Users.

The AnyNet IRIS user you created is listed.

4. Select the AnyNet IRIS IAM user name.

For example, select anynetuser. The IAM user Summary appears.

5. On the Permissions tab, select Add permissions.

6. Under Grant permissions, select Attach existing policies directly.

7. Using the Search box, search for: AmazonEC2ReadOnlyAccess.

8. Select the check box alongside the returned result.

12 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Required IAM Managed Policies

9. Search for each of the following policies in turn, ensuring you select the check box alongside
each returned listing:

• AmazonEventBridgeFullAccess

• AmazonS3FullAccess

• AWSCloudFormationFullAccess

• AWSCloudTrail_FullAccess

• AWSIoTFullAccess

• AWSIoTLogging

• IAMFullAccess

If you select the wrong policy, clear the check mark alongside it.

10. Select Next: Review.

The selected policies are displayed.

11. Select Add permissions.

The updated Summary page appears.

12. Select Add inline policy.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
13

Required IAM Managed Policies

13. On the JSON tab, replace the existing text with the following JSON script:

To preserve JSON formatting, copy the script from the following link: JSON inline policy.

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "AllowCrossAccountAccess",

"Action": [

"sts:AssumeRole"

],

"Effect": "Allow",

"Resource":

"arn:aws:iam::001813207414:role/AnyNetSecure@<customer_id>"

},

{

"Sid": "DenyAllUserAndOrganizationRelatedActions",

"Action": [

"iam:AddUserToGroup",

"iam:AttachUserPolicy",

"iam:CreateUser",

"iam:DeleteUser",

"iam:DeleteUserPermissionsBoundary",

"iam:DeleteUserPolicy",

"iam:DetachUserPolicy",

"iam:PutUserPermissionsBoundary",

"iam:PutUserPolicy",

"iam:RemoveUserFromGroup",

"iam:TagUser",

"iam:UntagUser",

"iam:UpdateUser",

"organizations:*"

],

"Effect": "Deny",

"Resource": "*"

}

]

}

14. In the JSON text, replace <customer_id> with your AnyNet Cellular Connectivity for AWS IoT
Customer ID.

If you cannot remember your Customer ID, see Viewing the AnyNet IRIS Welcome page.

14 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Required IAM Managed Policies

15. Select Review policy.

The Review policy page appears.

16. In the Name field, type a name for the policy, for example: AnyNetSecurePolicy.

17. Select Create policy.

The IAM�user account Permissions policies updates to include the inline policy.

After you have completed creating the IAM�user and have attached the essential policies, next you
must install and configure AnyNet IRIS.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
15

Required IAM Managed Policies

Installing AnyNet IRIS

Before you begin
To configure AnyNet IRIS you need:

• AWS Marketplace Customer ID

• AWS IAM user credentials

Installing AnyNet IRIS for Windows 10
1. On the AnyNet IRIS Welcome page, select:

The AnyNet IRIS Setup.exe downloads.

2. Run AnyNet IRIS Setup <version>.exe, where <version> is the latest version.

Depending on your Windows security, a warning may appear. Ensure that you run the
AnyNet IRIS�Setup <version>.exe app anyway.

AnyNet IRIS installs and opens.

3. Next, configure AnyNet IRIS.

For more information, see Configuring AnyNet IRIS on the facing page.

Installing AnyNet IRIS for macOS
1. On the AnyNet IRIS Welcome page, select:

The AnyNet IRIS-<version>.dmg file downloads.

2. Double-click AnyNet IRIS-<version>.dmg, where <version> is the latest version.

3. Drag the AnyNet IRIS icon into the Applications folder.

4. In the Applications folder, double-click the AnyNet IRIS application to open it.

5. Next, configure AnyNet IRIS.

For more information, see Configuring AnyNet IRIS on the facing page.

16 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Installing AnyNet IRIS

Configuring AnyNet IRIS
Credentials are not communicated outside of the AnyNet IRIS application, and are used to create the
Foundation CloudFormation stack. This is the base stack required to deploy resources to the AWS
regions you select.

Only the Access Key ID�is stored locally within the application. The Secret access key is not
stored in the application.

Only deploy the AWS Foundation CloudFormation stack once per IAM user account. It can
only exist in a single Service Region.

To configure AnyNet IRIS:

1. Using the AnyNet IRIS application, on the AWS credentials page, type the IAM�user credentials,
then select Next.

You can find the user credentials in the Download.csv file. For more information, see Click
Download.csv to store the keys locally on your computer. on page�10.

Do not use your AWS root user account to configure AnyNet IRIS. For more
information, see Creating a dedicated IAM user account for AnyNet IRIS on page�1.

If required, follow the onscreen instructions to create an access key.

You may prefer to copy and paste the credentials using keyboard shortcuts.

2. On the Customer ID page, type the AWS Marketplace Customer ID for AnyNet IRIS.

If required, follow the onscreen instructions to discover your Customer ID.

3. Select Next.

4. On the Foundation Stack page, select the region where you want to deploy the initial
Foundation CloudFormation stack.

The options displayed in the drop-down list depend on the IAM permissions and regions you set
up when you created the custom IAM user account.

5. If required, select Stack Preview to expand the preview and ensure the stack is compliant with
your organisation's stack requirements.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
17

Installing AnyNet IRIS

6. Select Next to deploy the stack to the selected region.

The initial stack enables Eseye cross-account access to your customer account.

indicates the deployment has completed successfully.

indicates the deployment has failed, which may occur because AWS is not ready. Try again.

If required, select the supplied link on the Foundation Stack page to view the full log files. If you
cannot progress, contact Support: cloudconnect@eseye.com.

7. Select Continue.

8. On the Email Notifications page, type the email addresses where you want to send AnyNet IRIS
advisory and alert notifications, then select Next.

AnyNet IRIS emails each supplied email address with a verification link.

9. Open each email, then select the Confirm subscription link to verify that email address.

The AWS Subscription confirmed page appears for each subscription. The AnyNet IRIS Email
Notifications page updates.

indicates successful subscription.

indicates the subscription has failed. If you cannot progress, contact Support:

cloudconnect@eseye.com.

10. Using AnyNet IRIS, select Continue.

11. On the Service Region page, select the AWS IoT regions where you want to deploy AnyNet IRIS
resources.

12. Select Complete to deploy the resource stack to the selected regions.

This may take a few minutes to complete.

13. Select Review to view Configuration, Status and Updates information.

For information about using AnyNet IRIS, including viewing and setting parameters, see
Reviewing thing connectivity.

Continue configuring your system to send and receive data.

18 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Installing AnyNet IRIS

Creating a thing in AWS IoT Core

Do not create things until you have verified the advisory and alert email addresses that you
supplied during AnyNet IRIS configuration. Receiving a verification link may take up to 30
minutes. If you have not received an email, contact Eseye Support: support@eseye.com.

Before you begin
• Ensure that the AnyNet Secure Cellular Connectivity configuration process is complete on

your AWS account.

• Eseye connects your thing to AWS over a cellular network. To purchase the requisite SIM
cards, search for AnyNet SIM on Amazon.com.

• You need a AnyNet Secure SIM number, which is the unique serial number printed on the
back of the SIM card.

To create a thing in AWS IoT Core:

1. Sign in to the AWS Management Console: aws.amazon.com/console

2. In the AWS Services section, find the IoT Core service.

3. If this is your first time to sign into the AWS Management Console, select Get Started.

4. In the left-hand AWS IoT menu, select Manage > Things.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
19

Creating a thing in AWS IoT Core

5. In the top right corner, select the correct AWS Region you want to use.

When you create the thing, it will only exist in this Region. Select a Region where you
deployed AnyNet IRIS. For more information, see page 17.

6. If this is your first time creating things, select Register a thing, otherwise select Create.

The Creating AWS IoT things page appears.

7. Select Create a single thing.

The Add your device to the thing registry page appears.

8. Type a Name for your thing.

9. In the Thing Type drop-down box, select AnyNetThingType.

For information about the AnyNetThingType, see
https://docs.eseye.com/Content/General/AnyNetThingType.htm.

10. If required, add the thing to a group.

11. In the Set searchable thing attributes section, leave the ActionRequest Value field blank.

12. Leave the PolicySelector Value field blank.

13. In the SimId Value field, type the SIM number (described above).

14. Select Next.

The Add a certificate for your thing page appears. Eseye manages the certificate process so you
don't have to.

20 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Creating a thing in AWS IoT Core

15. Select Create thing without certificate.

When you use AWS IoT in your AWS account for the first time, an AWS error may
appear because Device Gateway endpoint provisioning is not complete on your
account. If this occurs, allow AWS services 5-10 minutes to complete, and try again.

A Successfully created thing message appears, and the new thing appears on the Things page,
for example:

Establishing a cellular connection on the
Intelligent Cloud Connect
Ensure you have connected the terminal antenna to the Antenna connection.

To power on and establish your cellular connection:

1. Fully insert the SIM card into the Intelligent Cloud Connect.

You can see how to insert the SIM on the underside of the terminal. The socket is a
push-to-insert, push-to-release type socket. When the SIM is properly inserted, it clicks
into place and sits flush with the edge of the SIM slot.

2. Turn on the Intelligent Cloud Connect.

The Intelligent Cloud Connect connects to a cellular network using the Cinterion® PLS62-W
Wireless Module, and is now ready to receive security and identity information from AWS.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
21

Establishing a cellular connection on the Intelligent Cloud Connect

Provisioning the Cinterion® PLS62-W Wireless
Module
Eseye automatically provisions the AnyNet Secure SIM. During this process, the security and identity
information is downloaded and programmed into the SIM card. You can observe the provisioning
progress in the device shadow. You can access the shadow using Lambda functions, programatically, or
through the AWS IoT Console.

• Using the AWS IoT Console, select the thing you created using the matching SIM number, then
select Shadows > Classic Shadow to view the Shadow Document.

Use the Shadow state pane to view the certificate delivery progress. The certificate is delivered
after the status changes from Pending to Provisioned. You can also view smart terminal
message consumption and location information.

Provisioning normally takes 5-10 minutes to complete, although the process may take up to an
hour. If your Cinterion® PLS62-W Wireless Module has not connected in 24 hours, contact
Support: support@eseye.com.

During provisioning, the Cinterion® PLS62-W Wireless Module will reset four times. Use a terminal
emulator to observe this process.

For information about setting up a terminal emulator, see Attaching to the Intelligent Cloud
Connect.

When the device is ready, it sends the following URC:

+EMT:EMQRDY

You must wait until you receive the +EMT:EMQRDY URC before you can use the device to
send and receive commands.

If you are using the Intelligent Cloud Connect, and the device is not connecting, check the
LEDs:

22 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Provisioning the Cinterion® PLS62-W Wireless Module

• A green LED indicates power on.

• A flashing orange LED indicates network registration status. Regular half second
blinking indicates that the Cinterion® PLS62-W Wireless Module is searching for a
network. A brief flash every four seconds indicates that the device has registered to a
network and there is no data transfer.

For more information about the LEDs, refer to the Thales AT Command documentation.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
23

Provisioning the Cinterion® PLS62-W Wireless Module

Limiting the AWS IoT Core policy
AWS IoT Core policies allow you to control access to the AWS IoT Core data plane. The data plane
consists of operations that allow you to connect to the AWS IoT Core message broker, send and receive
MQTT messages, and get or update the device shadow.

By default, the AnyNet Secure provisioning service creates things with an open policy. This occurs
because the provisioning has no knowledge of your application, or the publish and subscribe topics and
processing you are using with your AWS account.

It is best practice to limit the policy to allow access to only the required resource and to limit that
access to only authenticated devices.

We recommend that you edit or replace the installed default policy. Only Allow required
actions or Deny actions that the thing never performs. Use a resource control for each action to
restrict resource access.

For example, if the thing only publishes and never subscribes, remove the subscribe action from the
Allow policy statement. Alternatively, specifically Deny the subscribe action. Use a resource control
such as Resource, which restricts the connection to a thing using a thing name registered in the AWS
IoT registry and authenticated against the ARN. For example:

["arn:aws:iot:
Region:123456789012:client/${iot:Connection.Thing.AWSThingName}"]

For more detailed examples of how to adjust policies to manage resource access, see: AWS IoT Core
policies.

24 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Provisioning the Cinterion® PLS62-W Wireless Module

Sending data from your thing to the cloud

Before you begin
• Using a terminal emulator, send an AT<CR> command to ensure that the smart terminal can

receive AT�commands. For more information, see General AT Commands for the Cinterion®
PLS62-W Wireless Module on page�31.

For information about connecting a terminal emulator to the modem, see
Attaching to the Intelligent Cloud Connect.

• Send an AT+ETMINFO=version<CR> command to verify that the version number is 2.0.20
or higher.

If the version number is not in this range, you will need to update the modem software. For
more information, see Updating the modem software on page�56.

• Ensure you know the thing name that you set up in AWS.

To test that your thing can publish information to AWS:

1. Create two publish topics in the Cinterion® PLS62-W Wireless Module.

a. Using a terminal emulator, type:

at+emqpubopen=0,"PublishToCloud0"<return>

at+emqpubopen=1,"PublishToCloud1"<return>

b. Check that the first two index numbers are assigned a topic each. Type:

at+emqpubopen?<return>

A list of index numbers and their assigned topics appears.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
25

Sending data from your thing to the cloud

2. Subscribe to the newly created publish topics in AWS.

a. Using AWS IoT, in the left hand menu, select Test.

b. In the Subscriptions panel, select Subscribe to a topic.

c. In the Subscription topic box, type:

+/<ThingName>

This subscribes AWS to all topics related to your thing.

d. Select Subscribe to topic.

A subscription appears listed in the Subscriptions panel.

3. Publish information to the topics you created in the Cinterion® PLS62-W Wireless Module.

You can send a maximum payload of 1000 characters to AWS.

a. Using the terminal emulator, type:

at+emqpublish=0,1,"{\"Temperature\": 24}"<return>

at+emqpublish=1,1,"{\"BatteryPower\": \"Low\"}"<return>

The emqpublish command uses the following syntax:

at+emqpublish=IndexNumber,QoS,

"{PublishDataInJSON}"

These messages instantly appear in AWS.

26 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Sending data from your thing to the cloud

4. View the published information in AWS.

a. In the Subscriptions panel, select +/<ThingName> to view all published messages.

If you can see the messages in AWS, then your thing can successfully publish data into the cloud
through the Cinterion® PLS62-W Wireless Module.

Next, test that the cloud can publish messages to your thing.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
27

Sending data from your thing to the cloud

Sending data from the cloud to your thing

Before you begin
Ensure your thing can send information to the cloud.

For more information, see Sending data from your thing to the cloud on page�25.

To test that AWS can publish information to your thing:

1. Create two subscribe topics in the Cinterion® PLS62-W Wireless Module.

a. Using a terminal emulator, type:

at+emqsubopen=0,"SubscribeFromCloud0"<return>

at+emqsubopen=1,"SubscribeFromCloud1"<return>

b. Check that the first two index numbers are assigned a topic each. Type:

at+emqsubopen?<return>

A list of index numbers and their assigned topics appears.

28 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Sending data from the cloud to your thing

2. Use AWS to publish a message to each topic.

a. In the Subscriptions panel, select Publish to a topic.

b. In the Publish box, type:

SubscribeFromCloud0/ThingName

c. In the coding window, replace

Hello from AWS IoT console with

Turn heating on

d. Select Publish to topic.

e. In the Publish box, type:

SubscribeFromCloud1/ThingName

f. In the coding window, replace

Turn heating on with

Heat for 1 hour

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
29

Sending data from the cloud to your thing

g. Select Publish to topic.

View the AWS messages in the terminal emulator, in the following format:

+EMQ: <indexnumber>,<messagelength>
{

"message": "<messagetext>"
}

If you can see the messages in the terminal emulator, then AWS can successfully publish data to
your thing through the Cinterion® PLS62-W Wireless Module.

Interacting with the AWS IoT shadow
You can configure the Cinterion® PLS62-W Wireless Module to provide a persistent representation of
your thing in the cloud, for use by applications or devices. You can publish current and updated state

information to a shadow, and your thing can synchronize its state when it connects.

For information about enabling shadow use, see EMQPERSIST – report a set value to the device
shadow on page�39.

For detailed AWS�information about using shadows, see Simulating Device Shadow service
communications.

30 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Interacting with the AWS IoT shadow

General AT Commands for the
Cinterion® PLS62-W Wireless Module
You can directly access the cloud and manage the Eseye-enabled Cinterion® PLS62-W Wireless Module
using AT commands.

You can find a full set of the Cinterion® PLS62-W Wireless Module AT commands here:

Cinterion® PLS62-W AT Command Set PDF

Use a terminal emulator to send test, read and write AT commands to the Cinterion® PLS62-W Wireless
Module. For terminal emulator configuration information, see Attaching to the Intelligent Cloud
Connect on page�3.

Before you begin
Before you use any Eseye-enabled AT commands on the modem, ensure that it is ready to receive
AT commands.

To test that the modem is ready to receive AT�commands:

1. Using a terminal emulator that is connected to your modem, type:

at<return>

The terminal emulator will return any of the following:

OK – the modem is connected and ready to communicate with the host

ERROR– the modem cannot communicate with the host. Contact the modem supplier.

Nothing – ensure you have set the correct baud rate in your terminal emulator. For more
information, see Attaching to the Intelligent Cloud Connect on page�3 .

2. Type: at+etminfo=version<return>

The terminal emulator will return either of the following:

• +ETMINFO: "version", where <version> is the current software version – the
modem is ready to receive AT�commands. Verify that the version number is 2.0.20
or higher.

• ERROR – the modem is not ready to receive AT�commands. The ETM software has not
yet initialised. Try again in 5 seconds.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9 31

General AT Commands for the Cinterion® PLS62-W Wireless Module

AT Command syntax
Use the following syntax:

AT+<COMMAND><CR>

where:

• AT is in upper or lowercase

• <COMMAND> is a test, read or write command in upper or lower case

• <CR> is the end-of-line character marking the end of a command line (alias \r – carriage return)

The modem will execute the command line after receiving the end-of-line character.

• <LF> is the line feed, which will move the cursor to the next line

This document displays commands only. <CR><LF> after a command is intentionally omitted.

AT�commands are usually followed by a response that includes:

<CR><LF><RESPONSE><CR><LF>

where <RESPONSE> is the command response

This document displays responses only. <CR><LF> is intentionally omitted.

The response may include:

• OK – indicates the command executed with no errors

• ERROR – indicates an invalid command, or that the command line was too long

Types of AT Commands and responses
Command
type

Command syntax Description

Test AT+<COMMAND>=? Returns a list of parameters and value ranges set by the
corresponding Write command or internal processes.

Read AT+<COMMAND>? Returns the currently set value of each parameter.

Write AT+<COMMAND>=
<parameter>

Sets the user-defined parameter values.

Execute AT+<COMMAND> Reads non-variable parameters affected by internal processes in the
Eseye-enabled modem. .

Thales supply a large set of AT commands that work with the Cinterion® PLS62-W Wireless
Module. You may find AT+CCID, AT+CREG, AT+CEREG, AT+CGREG and AT+CSQ useful. For
more information, see the Thales AT command set documentation.

32 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

General AT Commands for the Cinterion® PLS62-W Wireless Module

ETM Management AT commands
The following commands are developed for the Eseye Telemetry Module (ETM).

About the Eseye Telemetry Module
The Eseye Telemetry Module (ETM) is an application that runs on the Cinterion® PLS62-W Wireless
Module. ETM simplifies connectivity to IoT cloud services by integrating Eseye AnyNet Secure SIM
communication and the MQTT signalling stack inside the modem.

You use an AT-command interface to send and receive telemetry data to and from the cloud service.
The Cinterion® PLS62-W Wireless Module buffers publish data until it is delivered to the cloud.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
33

ETM Management AT commands

ETMINFO – displays information about the current ETM
application and device
Displays information about the current ETM application and device.

Type Syntax Response
Test AT+ETMINFO=? +ETMINFO:

(ci,iccid,imei,imsi,mcc,mnc,rss,
service,version)

Read AT+ETMINFO? OK

or

ERROR

Write AT+ETMINFO=<id>

where <id> is either:

• ci – the unique cell identity

• iccid – the SIM unique identifier

• imei –the device unique identifier

• imsi – the cellular network user
unique identifier

• mcc – the mobile country code

• mnc – the mobile network code

• rssi – the received signal strength
indicator

• service – shows whether the
modem is registered to a network

• version – the current version of
Eseye software on the selected
modem

<value>

OK

where value is the requested value, such as
the SIM ICCID.

For service:

• 0 – not registered

• 1 – registered

or

ERROR

Example

AT+ETMINFO=ICCID
8944538523020412345
OK

34 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

ETM Management AT commands

ETMRESET – reboot the Intelligent Cloud Connect
Reboots the modem.

Type Syntax Response
Execute AT+ETMRESET The module reboots.

+ETM:SYSSTART

+ETM:IDLE

+PBREADY

^CERTIFICATES_CONFIG: START

^CERTIFICATES_CONFIG: 0, new certificates are not
available

+ETM:EMQRDY

or

ERROR

Example

at+etmreset
+ETM:SYSSTART

+ETM:IDLE

+PBREADY

^CERTIFICATES_CONFIG: START

^CERTIFICATES_CONFIG: 0, new certificates are not available

+ETM:EMQRDY

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
35

ETM Management AT commands

ETMSTATE – check current state
Checks the current state of the Intelligent Cloud Connect.

Type Syntax Response
Test AT+ETMSTATE=? OK

+ETMSTATE: 0 disables URCs, 1 enables URCs

Read AT+ETMSTATE? <State>
OK

or

ERROR

Write AT+ETMSTATE=<cmd>

where <cmd> is the command, either:

0 – disable state change URC

1 – enable state change URC

AT+ETMSTATE=<CurrentState>

OK

Example

AT+ETMSTATE?
0

OK

36 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

ETM Management AT commands

+ETM Unsolicited Response Codes (URCs)
The Eseye Telemetry Module adds the following Eseye URCs to the modem. All ETM URCs are prefixed
+ETM:.

You will continue to observe other URCs from the Cinterion® PLS62-W Wireless Module.

For information about all other URCs, see the relevant Thales documentation. For more
information, contact Thales or their channel partner.

URC Description
+ETM:EMQRDY ETM has entered MQTT mode and is ready to accept any AT+EMQ...

commands. Prior to this, only AT+ETM... commands are accepted.
+ETM:IDLE The modem has started up and is ready for commands.
+ETM:REBOOTING The modem will shortly restart. Wait for +ETM:IDLE before sending

commands. Configure automatic rebooting using update_autoreboot in
the configuration file. For more information, see Using the Cinterion®
PLS62-W Wireless Module configuration file on page�50.

+ETM:UNABLE TO OPEN
MQTT

The Cinterion® PLS62-W Wireless Module has the certificates, and has
tried and failed to open the data connection. No action required. The
system will automatically restart in 30 minutes.

+ETMSTATE:<StateID>

where <StateID> is the
current connectivity state
of the Cinterion®
PLS62-W Wireless
Module.

Enable this response using the AT+ETMSTATE write command. For more
information, see ETMSTATE – check current state on the previous page.

+ETM:SYSSTART Indicates that the Eseye Telemetry Module application has started.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
37

ETM Management AT commands

MQTT telemetry AT�commands
The MQTT client registers each topic with an index that is used to publish the messages. The response
indicates acceptance or rejection of the topic. Optionally, you can configure a single fixed topic so the
Cinterion® PLS62-W Wireless Module need not keep track of topic indices for sending or receiving data.

The MQTT client supports QoS 0 and 1, and always connects to the broker as a clean session. All
publish messages are queued in a non-volatile flash memory until they are sent to the broker. For QoS
1 messages, ETM waits for a puback from the broker before discarding the sent data and transmitting
the next message. This mechanism queues messages while a network connection is not available, and
forwards messages when the connection establishes.

EMQ – publish a message to singletopic
Publish a message to the system singletopic. Singletopic is a predefined topic for single-subscription
systems, where the host is not expected to register a publish topic with +EMQPUBOPEN. The publish
topic and QoS are defined in the configuration file. For more information, see the [MQTT] section,
Using the Cinterion® PLS62-W Wireless Module configuration file on page�50. The index is not required.

Type Syntax Returned Result
Test AT+EMQ=? OK

+EMQ:"<pubdata>"

Read AT+EMQ? OK

or

ERROR

Write AT+EMQ=<pubdata>

where

<pubdata> – is the published message. The
maximum payload length is 1000 characters.
All characters must be printable.

ETM handles <pubdata> as ASCII-hex if it
contains an even number of valid ASCII-hex
characters (0-9, a-f, A-F). ASCII-hex is
converted to binary for transmission.

ETM handles all other data as text. For text
messages, \ (escape characters) are removed.

OK – command result

SEND OK – subsequent URC that is sent when
publish occurs. This will not happen
immediately if ETM is offline.

or

ERROR – check that [MQTT]
singlepubtopic is configured in the
configuration file. For more information, see
singlepubtopic on page�52.

Example:

AT+EMQ="{\"BatteryPower\": \"Low\"}"
OK

SEND OK

38 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

MQTT telemetry AT�commands

EMQPERSIST – report a set value to the device shadow
Report a set value to the device shadow/twin. The operation depends on which AWSSHADOW mode you
set, either simple or complete.

You set AWSSHADOW in the Configuration File. For more information, see Using the Cinterion®
PLS62-W Wireless Module configuration file on page�50.

AWSSHADOW simple mode
The shadow Eseye Telemetry Module (ETM) performs the following automatically:

• Generates the JSON state and reported or desired objects

• Subscribes to the shadow/update/delta topic, and filters out the containing objects

• Presents the host with the state object JSON content only, sent via URC

The host only sends the content of the reported object.

AWSSHADOW complete mode
The host sends the complete JSON for the shadow to ETM.

ETM sends the complete shadow message as a URC, without filtering.

EMQPERSIST commands
Type Syntax Returned Result
Test AT+EMQPERSIST=? OK

EMQPERSIST:<json>

Read AT+EMQPERSIST? OK

or

ERROR

Write AT+EMQPERSIST=<JSON>

where JSON is the JSON code, which depends
on the AWSSHADOW mode you configured.

For simple mode:

Either the content of the state reported
object or desired object is required, in this
format:

AT+EMQPERSIST="{\"key\":value}"

where value is a numeric value, including
decimals and negative numbers.

If the passed-in text does not include
reported or desired, then reported is
assumed. The state reported

OK

SEND OK

or

ERROR

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
39

MQTT telemetry AT�commands

Type Syntax Returned Result
encapsulation is appended.

If the passed-in text includes reported
and/or desired, only the state
encapsulation is appended.

For example, for the reported text:

"{\"key\":\"value\"}" and

"{\"reported\":{\"key\":\"value\"}}

are both sent as

{\"state\":{\"reported\":
{\"key\":\"value\"}}}

For example, for reported and desired text:

"{\"reported\":
{\"key\":\"value\"},\"desired\":

{\"key\":\"value\"}}" is sent as

{\"state\":{\"reported\":
{\"key\":\"value\"},\"desired\":
{\"key\":\"value\"}}}.

For complete mode:

The complete JSON data for the
shadow/update topic is required, in this
format:

AT+EMQPERSIST={"state":
{"reported":"{\"key\":value}"}}

where value is a numeric value, including
decimals and negative numbers.

Examples

For Simple mode:

AT+EMQPERSIST="{\"Temperature\":-3.5}"

For Complete mode, including setting AWSSHADOW to complete:

AT+EMQPERSIST="{\"state\":{\"reported\":{\"Temperature\":28.0}}}"

40 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

MQTT telemetry AT�commands

EMQPUBOPEN – create a publish message topic
Create and view publish message topics, which will enable you to publish data to things in AWS IoT
Console.

Type Syntax Response
Test AT+EMQPUBOPEN=? +EMQPUBOPEN: (0-7),<topic>

Read AT+EMQPUBOPEN? List of publish topics.

+EMQPUBOPEN topics:
0 <publishtopic0>/<AWSthingnameA>
1 <publishtopic1>/<AWSthingnameB>
2 null
3 null
4 null
5 null
6 null
7 null

OK

where:

• 0, 1, 2, and so on are the index
numbers

• <publishtopicn> is the unique name
for each publish index

• <AWSthingnameA> is the unique name
for the thing that you defined in AWS.
For more information, see Available
files and sizes.

• null is an empty publish topic

Write AT+EMQPUBOPEN=(0-7),<topic>

where:

• (0-7) is a publish index number in the
range from 0, up to and including 7.

• <topic> is the publish topic title with
a maximum length of 246 characters.
Topic titles cannot contain special
characters.

OK
+EMQPUBOPEN: (0-7),<status>

where

• (0-7) is the publish index number you
selected from the range

• <status> is:

• 0 – successfully installed the
publish topic

• -1 – AWS rejected the publish
request

• -2 – socket already in use

or

ERROR – the command failed.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
41

MQTT telemetry AT�commands

Example:

AT+EMQPUBOPEN=1,PublishToCloud1
OK

+EMQPUBOPEN: 1,0

AT+EMQPUBOPEN?
OK

+EMQPUBOPEN topics:
0 PublishToCloud0/AWSThingName
1 PublishToCloud1/AWSThingName
2 null
3 null
4 null
5 null
6 null
7 null

42 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

MQTT telemetry AT�commands

EMQPUBCLOSE – remove a publish message topic
Remove a publish message topic.

Type Syntax Returned Result
Test AT+EMQPUBCLOSE=? OK

+EMQPUBCLOSE:(0-7)

Read AT+EMQPUBCLOSE? OK

or

ERROR

Write AT+EMQPUBCLOSE=(0-7)

where:

(0-7) is a publish index number in the range
from 0, up to and including 7. You must have
already published a topic to the selected
index number, or the command will return an
error.

OK

+EMQPUBCLOSE:(0-7),<status>

or

ERROR

+EMQPUBCLOSE:(0-7),<status>

where:

• (0-7) is the publish index number you
selected from the range

• status is either:

• 0 – subscription cancelled
successfully

• -1 – broker returned an
unsubnack

• -2 – no topic was registered for
the given index

Example:

AT+EMQPUBCLOSE=0
OK

+EMQPUBOPEN: 0,0

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
43

MQTT telemetry AT�commands

EMQPUBLISH – publish data to a message topic
Publish data to a created message topic. Data is sent to your thing in AWS IoT Console.

Type Syntax Returned Result
Test AT+EMQPUBLISH=? OK

+EMQPUBLISH: (0-7),(0-

1),"<pubdata>"

Read AT+EMQPUBLISH? OK

Write AT+EMQPUBLISH=(0-7),(0-1),<pubdata>

where:

• (0-7) is the publish index number

• (0-1) is the Quality of Service, either:

• 0 – sends the message without
guaranteeing delivery. The
message is not stored on the
sender, and is not acknowledged

• 1 – guarantees the message is
delivered at least once

• <pubdata> – is the published message.
The maximum payload length is 1000
characters. All characters must be
printable.

ETM handles <pubdata> as ASCII-hex if
it contains an even number of valid
ASCII-hex characters (0-9, a-f, A-F).
ASCII-hex is converted to binary for
transmission.

ETM handles all other data as text. For
text messages, \ (escape characters)
are removed.

OK– successfully wrote the command

ERROR – the command failed. Check your
syntax, and that you have already set up the
publish topic using at+emqpubopen?.

SEND OK – send confirmation relating to
Quality of Service. This response is for:

• QoS=0 – message is published

• QoS=1 – MQTT broker generates a
PUBACK to confirm receipt of the
MQTT message

SEND FAIL - send failure for QoS=1 only.

Example:
AT+EMQPUBLISH=1,1,"{\"BatteryPower\": \"Low\"}"
OK

SEND OK

44 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

MQTT telemetry AT�commands

EMQSUBOPEN – create a subscribe message topic
Create and view subscribe message topics, which will enable you to send data from AWS to your thing.

Type Syntax Returned Result
Test AT+EMQSUBOPEN=? +EMQSUBOPEN:(0-7),<topic>

Read AT+EMQSUBOPEN? List of subscribe topics.

+EMQSUBOPEN topics:
0 <subscribetopic0>/<AWSthingnameA>
1 <subscribetopic1>/<AWSthingnameB>
2 <subscribetopic2>
3 <subscribetopic3>
4 <subscribetopic4>
5 <subscribetopic5>
6 <subscribetopic6>
7 <subscribetopic7>

OK

where:

• 0, 1, 2, and so on are the index
numbers

• <subscribetopicn> is the unique
name for each subscribe index

• <AWSthingnameA> is the unique name
for the thing that you defined in AWS.
Maximum length: 1000 characters(for
ASCII�hex, this means 500 bytes of
binary data). For JSON, escaped
characters count as 1 character.

Write AT+EMQSUBOPEN=(0-7),<topic>[/$t |
/$i]

where:

• (0-7) is a subscribe index number in
the range from 0, up to and including
7.

• <topic> is the subscribe topic title
with a maximum length of 246
characters. Topic titles cannot contain
special characters.

OK
+EMQSUBOPEN: (0-7),<status>

where

• (0-7) is the subscribe index number
you selected from the range

• <status> is:

• 0 – successfully installed the
subscribe topic

• -1 – AWS rejected the subscribe
request

• -2 – socket already in use

or

ERROR – the command failed.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
45

MQTT telemetry AT�commands

Example:

AT+EMQSUBOPEN=1,SubscribeFromCloud1
OK

+EMQSUBOPEN: 1,0

AT+EMQSUBOPEN?
OK

+EMQSUBOPEN topics:
0 SubscribeFromCloud0
1 SubscribeFromCloud1
2 null
3 null
4 null
5 null
6 null
7 null

46 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

MQTT telemetry AT�commands

EMQSUBCLOSE – cancel a subscription to a message topic
Cancel a subscription to a topic.

Type Syntax Returned Result
Test AT+EMQSUBCLOSE=? OK

+EMQSUBCLOSE:(0-7)

Read AT+EMQSUBCLOSE? OK

or

ERROR

Write AT+EMQSUBCLOSE=(0-7)

where:

(0-7) is a subscribe index number in the
range from 0, up to and including 7. You must
have already subscribed to the selected index
number, or the command will return an error.

OK

+EMQSUBCLOSE:(0-7),<status>

or

ERROR

+EMQSUBCLOSE:(0-7),<status>

where:

• (0-7) is the subscribe index number
you selected from the range

• status is either:

• 0 – subscription cancelled
successfully

• -1 – broker returned an
unsubnack

• -2 – no topic was registered for
the given index

Example:

AT+EMQSUBCLOSE=0
OK

+EMQSUBCLOSE: 0,0

AT+EMQSUBOPEN?
OK

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
47

MQTT telemetry AT�commands

+EMQ Unsolicited Response Codes (URCs)
When AWS publishes data to your thing, the ETM application forwards the data through the AT
command interface using an appropriate URC.

If the data buffer contains only printable characters, it is presented unmodified. This makes transfer of
JSON and ASCII text transparent. If non-printable characters are contained in the buffer, the entire
buffer is converted to ASCII-hex and sent within quotes.

URC Description
+EMQ:<S>,<len>\r\n<data>

or

+EMQ:<id>,<len>\r\n<data>

Indicates data received on a subscribed topic, where:

• S is for singletopic only. Indicates data received on a
single topic, in ASCII-hex format. For information about
singletopic, see EMQ – publish a message to singletopic on
page�38.

• <id> is the subscribed topic index number, not for
singletopic use

• <len> is the length of the incoming data

• <data> is the received data in either ASCII-hex format or as
text, depending on both the urcautoformat setting in the
configuration file, and if <data> appears within quotes.

For example, if the urcautoformat setting = 1, then:

• <id>,<len>\r\n"<data>" reports data in ASCII-
hex format

• <id>,<len>\r\n<data> reports data in text
format

For more information, see Using the Cinterion® PLS62-W
Wireless Module configuration file on page�50.

+EMQPERSIST:<len>

<JSON>

Reports a message from the cloud service indicating something in
the persistence service has changed.

For simple AWSSHADOW� mode, only the '{"state":{...'
parameters that have changed in the AWS�delta are listed.

For example:

+EMQPERSIST:{"key1":"value1","key2":"value2"}

where value1 and value2 are any type of value, including strings,
integers, decimals and negative numbers.

For complete AWSSHADOW mode, the entire JSON is listed.

For example:

+EMQPERSIST:
{"version":186201,"timestamp":1573232068,"state":

48 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

MQTT telemetry AT�commands

URC Description
{"key1":"value1","key2":"value2"},"metadata":
{"key1":{"timestamp":1573232068},"key2":
{"timestamp":1573232068}}}

where value1 and value2 are numeric values, including decimals
and negative numbers.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
49

MQTT telemetry AT�commands

Using the Cinterion® PLS62-W Wireless Module
configuration file
The Eseye-enabled Cinterion® PLS62-W Wireless Module operating parameters are contained in the
configuration file, which you can find here: a:/config.ini.

If this file does not exist, ETM uses internal default configuration parameters.

To update the configuration file over the air, see Updating the modem firmware using AWS
IoT jobs on page�65.

You can deploy the configuration file using either: http or https.

You can trigger an update using MQTT.

The .ini file is divided into sections, denoted by square brackets. Each section has parameters listed
underneath it.

Section Parameter Definition
[operation] Operational parameters

mode Operating mode, either:

mqtt

none (default)

apptrace Application trace level (0-4), for Support purposes. Leave as 1
(default).

nvqueuetrace Non-volatile (NV) queueing subsystem trace level (0-4), for Support
purposes. Leave as 1 (default).

teletrace Data connection subsystem trace level (0-4), for Support purposes.
Leave as 1 (default).

attrace AT command trace level (0-4), for Support purposes. Leave as 1
(default).

nvqueuemaxsize Maximum size (in bytes) of the NV data TX queue. Default: 2048
bytes. If the queue size is exceeded, the oldest messages are
dropped.

The default size is intended for devices sending small
message payloads. Increase this amount if you are using
devices that send large message payloads.

For large messages, you must ensure that the maximum NV store size
is at least four times the largest expected published message size,
plus eight bytes for the storage header. For example, for 1000 byte
messages, set a minimum nvqueuemaxsize of 4032.

nvqueue_enable The non-volatile memory NV queue is enabled by default to prevent

50 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Using the Cinterion® PLS62-W Wireless Module configuration file

Section Parameter Definition
message loss during a power-cycle or reboot. Use:

0 – NV queue is not enabled

1 (default) – NV queue is enabled

[network] Network parameters

apn Access Point Name

apnuser APN user name

apnpass APN password

tech Preferred technology for connecting to the cellular network, either:

2G – 2G only

LTE – LTE only

any (default) – either 2G or LTE

[application] Application parameters

updateurl Application firmware update URL, either: http or https

If this parameter is not set, it is not included in the
configuration file.

updateport Application firmware update protocol IP port. Default: 80

fotaurl Modem firmware OTA image URL, either: http or https

If this parameter is not set, it is not included in the
configuration file.

fotaport Modem firmware OTA image protocol IP port. Default: 80

[host] Host parameters

updateurl Host firmware update URL, either: http or https

If this parameter is not set, it is not included in the
configuration file.

updateport Host firmware update protocol IP port. Default: 80

[config] Configuration file update parameters

updateurl Configuration file update URL, either: http or https

If this parameter is not set, it is not included in the
configuration file.

updateport Configuration file update protocol IP port. Default: 80

[mqtt] MQTT parameters

clientid MQTT client ID

If this parameter is not set, it is not included in the

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
51

Using the Cinterion® PLS62-W Wireless Module configuration file

Section Parameter Definition

configuration file.

port MQTT IP port. Default: 8883

keepalive Maximum expected time (in seconds) between received keepalives
before ETM assumes the MQTT connection is down. Default: 1200

topicsuffix Appends a topic path to the end of the requested topic to uniquely
identify the thing on the broker.

thingname (default) – the AWS thingname

imei – the unique IMEI number for the device

none – the exact topic is used, with no suffix appended

If topicsuffix is not present in the configuration file, then
thingname is appended on the requested topic.

urcautoformat For formatting URCs, either:

0 – sends all URCs as ASCII-hex within quotes

For example: '{"key1":"val1"}' will appear in a URC as
'+EMQ:<id>,15\r\n"7B226B657931223A2276616C31227D"'

1 (default) – this option enables sending URCs as either ASCII-hex or
text, depending on the received payload.

• If the received payload is printable text (including JSON), then
the URC data is sent as text.

For example:

'{"key1":"val1"}' will appear in a URC as
'+EMQ:<id>,15\r\n{"key1":"val1"}'

For JSON, the maximum payload is 1012 characters. Escaped
quotes count as 1 character: \"

• If the received payload is binary data, then the URC data is
sent as ASCII hex.

singlesubtopic Predefined topic for single subscription systems

If this parameter is not set, it is not included in the
configuration file.

singlesubtopicqos Quality of Service (QoS) for single subscription, defining the
guarantee of message delivery. Either:
0 (default) – at most once, no guarantee of message delivery

1 – the message is sent or delivered to the receiver one or more
times

singlepubtopic Predefined topic for single-publish systems

52 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Using the Cinterion® PLS62-W Wireless Module configuration file

Section Parameter Definition

If this parameter is not set, it is not included in the
configuration file.

singlepubtopicqos QoS for single publish, defining the guarantee of message delivery.
Either:
0 (default) – at most once, no guarantee of message delivery

1 – the message is sent or delivered to the receiver one or more
times

tracelevel MQTT trace level (0-4), for Support purposes. Leave as 1 (default).

mqttsettingstopic Alternative to the AWS IoT shadow for configuring ETM behaviour.
Subscription to this single topic enables commands to be sent from
the cloud broker to ETM via MQTT. Use:

<topic> – the subscribe topic title

mqttlwttopic Last will and testament (LWT) topic path for notifying subscribed
clients about an unexpected loss of connection. To enable LWT, you
must configure mqttlwttopic and mqttlwtmessage. Use:

<topic> – the topic path

If this parameter is not set, it is not included in the
configuration file.

mqttlwtmessage LWT message for notifying subscribed clients about an unexpected
loss of connection. To enable LWT, you must configure
mqttlwttopic and mqttlwtmessage. Use:

<message> – the MQTT message that is discarded if the client
disconnects gracefully

If this parameter is not set, it is not included in the
configuration file.

mqttlwtqos Last will and testament (LWT) message QoS, defining the guarantee
of message delivery. Either:
0 (default) – at most once, no guarantee of message delivery

1 – the message is sent or delivered to the receiver one or more
times

mqttlwtretain LWT message retained message flag, either:

0 (default) – message flag not enabled. This is a required setting for
AWS only.

1 – message flag enabled

awsjobs AWS jobs topics subscription and for processing jobs instructions,
either:

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9
53

Using the Cinterion® PLS62-W Wireless Module configuration file

Section Parameter Definition
0 – Do not subscribe to AWS�jobs topics

1 (default) – Subscribe to AWS jobs topics

awsshadow AWS shadow mode for reporting a set value to the device
shadow/twin, either:

simple (default) – Report only the content of the state reported
object

complete – Report the complete JSON data

off – Do not report a set value

For more information, see EMQPERSIST – report a set value to the
device shadow on page�39.

[udp] UDP parameters

url UDP IP address

If this parameter is not set, it is not included in the
configuration file.

port UDP IP port. Default: 12401

[sms] SMS parameters

enable For configuring SMS handling, either:

0 – SMS handling disabled

1 (default) – SMS handling enabled

whitelist Comma-separated list of one or more MSISDN values from which
SMS is accepted. For example: 447624499970,447624499971

tracelevel SMS trace level (0-4), for Support purposes. Leave as 1 (default).

[location] Location parameters

enable For configuring location, either:

0 (default) – location disabled

1 – location enabled; Cinterion® PLS62-W Wireless Module will
always try to establish a GPS/GNSS location while running

tracelevel Location trace level (0-4), for Support purposes. Leave as 1 (default).

54 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Using the Cinterion® PLS62-W Wireless Module configuration file

Data security
When you create a thing within AWS IoT Console, the associated SIM enables the Cinterion® PLS62-W
Wireless Module to register on a cellular network.

The Amazon Trust Service (ATS) uses the cellular network to securely deliver the following information
to the Cinterion® PLS62-W Wireless Module.

For identification purposes:

• The unique AWSthing name

• The Amazon Resource Name (ARN) that defines which AWS endpoint supports the thing

For security purposes:

• A set of X.509 certificates

• An encrypted private key – AWS and the Cinterion® PLS62-W Wireless Module use key pairs for
signing data

The certificates and private key are stored in a secure Java keystore. The end user cannot see or handle
the security materials throughout their use.

When a thing is deleted in AWS, the data within the device keystore remains in the keystore. If you
reuse the device with a new SIM and recreate it as a new thing within AWS, then any existing security
information in the keystore is replaced by the new certificates and a new private key.

AWS security compliance
The Cinterion® PLS62-W Wireless Module meets AWS security requirements:

• Each connected device has a set of credentials to access the message broker or device shadow
service

• Device credentials are stored safely in order to send data securely to the message broker

• All traffic to and from AWS IoT is encrypted over Transport Layer Security (TLS)

For more information, see the AWS documentation Security section, including:
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security.html.

Processing updates
Updates to the certificates and keys are handled in the same way as all security data. This enables you
to apply a managed certificate rotation policy, as well as automatically protecting the device against
changes in rootCA providers.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9 55

Data security

Updating the modem software
If you have the Cinterion® PLS62-W Wireless Module version 2.0.5 or previous, you must install the
Eseye Updater and update the device software.

You will install the following:

• USB Drivers – to enable the computer to access the Cinterion® PLS62-W Wireless Module

• Module Exchange Suite (MES) tool – enables you to copy files into the Cinterion® PLS62-W
Wireless Module

• Eseye Updater – a tool for updating the current software

• Cinterion® PLS62-W Wireless Module software (latest version)

Before you begin
You need:

• Windows 10 computer, version 1909 or later, with administrator access.

• The Cinterion® PLS62-W Wireless Module you want to update, which may exist within a
smart terminal. Ensure it is powered on.

• A cable for connecting the Cinterion® PLS62-W Wireless Module to the computer. Ensure
the cable is connected to the device and the computer.

If you are using the Intelligent Cloud Connect, you will need a USB 2.0 A male – B male
cable.

• A customer login for Eseye Zendesk, to access and download the required zip files. If you do
not have a customer login, contact Eseye Support: support@eseye.com.

Installing the USB drivers and Module Exchange
Suite (MES)
To download the USB drivers:

1. Using the Windows 10 computer, go to:

https://eseye.zendesk.com/hc/en-us/articles/360009436498

2. Log into Zendesk to view the files.

3. Download pls62-w_rev02.000_arn01.000.04_drivers.zip.

4. Extract all the contents of the zip file to here:

C:\Drivers

56 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Updating the modem software

To install the USB drivers:

1. Using the Windows 10 computer, open Device Manager.

2. Expand Ports (COM & LPT).

Five ports are listed. Their names may differ from those displayed in the example, depending on
your computer setup.

3. Right-click the first listed port (in this example, COM10), then select Update driver in the
shortcut menu.

The Update Drivers - USB Serial Device window appears for that port.

4. Select Browse my computer for driver software.

5. Alongside Search for drivers in this location, select Browse.

6. Browse to C:\Drivers\USB.

7. Ensure the Include subfolders checkbox is selected.

8. Select Next to install the drivers.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9 57

Updating the modem software

9. If the Windows Security box appears, asking if you would like to install this device software,
select Install.

The Windows has successfully updated your drivers window appears.

10. Select Close.

In Device Manager, the port name updates.

11. Repeat this procedure for each of the listed ports.

12. When you have finished updating the drivers, you should have one USB Modem driver, three
USB Com ports and a do_not_use port listed:

The do_not_use port is for diagnostics. The MES tool uses one of the USB Com ports.
Use one of the alternative USB Com ports for the terminal emulator – this cannot use
the same port as the MES tool.

To install the MESSetup.exe tools:

1. Using the Windows 10 computer, go to:

https://eseye.zendesk.com/hc/en-us/articles/360009436498

2. Download MESSetup.zip.

3. Extract the contents to your Downloads folder, then run MESSetup.exe.

58 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Updating the modem software

4. Depending on your user permissions, a message box may appear: Do you want to allow this app
to make changes to your device? Select Yes.

The InstallShield Wizard starts.

5. Select Next to view the License Agreement.

6. Select Yes to accept the terms of the license agreement and install the MES tool.

Selecting No will close the wizard.

7. Select Finish to exit the InstallShield Wizard.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9 59

Updating the modem software

Preparing the Cinterion® PLS62-W Wireless
Module for the latest Eseye Updater

We highly recommend that you remove existing Eseye Updater software from the
Cinterion® PLS62-W Wireless Module, using the following procedure. If the Eseye Updater
does not exist, you will receive an Error response. You can ignore this response.

Use a terminal emulator to perform the following procedure. For more information, see
Attaching to the Intelligent Cloud Connect on page�3.

To uninstall existing Eseye Updater software:

1. Using a terminal emulator, type:

at^SJAM=2,"a:/EseyeUpdater.jad",""<return>

at^SJAM=3,"a:/EseyeUpdater.jad",""<return>

Both commands return the following response if previous Eseye Updater software was
uninstalled:

OK

2. Leave the terminal emulator open.

60 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Updating the modem software

Downloading the software update onto the modem
To download the software update onto the modem:

1. Using Windows File Explorer, browse to This PC.

2. In the right-hand display panel, right-click Module.

3. In the shortcut menu, select Properties.

4. On the Port tab, select a COM�Port that enables you to connect to the Cinterion® PLS62-W
Wireless Module.

For information about which port to use, see Installing the USB drivers and Module Exchange
Suite (MES) on page�56.

Use a terminal emulator to test the connection on that port. For information about checking if a
device is ready to receive AT commands, see General AT Commands for the Cinterion® PLS62-W
Wireless Module on page�31.

5. Select OK to connect to the Cinterion® PLS62-W Wireless Module through that port.

6. Double-click Module to view Module Disk (A:).

7. Double-click Module Disk (A:).

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9 61

Updating the modem software

Installing the latest Eseye Updater
To install the Eseye Updater:

1. Using the Windows 10 computer, go to:

https://eseye.zendesk.com/hc/en-us/articles/360008923637

2. Download ICC_EseyeUpdater_<version>.zip, where <version> is the latest version.

3. Extract the contents to your Downloads folder.

4. Copy EseyeUpdater.jad and EseyeUpdater.jar from the extracted EseyeUpdater folder to the
Module Disk (A): folder.

5. Using a terminal emulator, type:

at^SJAM=0,"a:/EseyeUpdater.jad",""<return>

The following response occurs: OK

You will receive an Error response if you did not copy the files to the Module
correctly, or if you have not removed a previous version of the Eseye Updater. For
more information, see Preparing the Cinterion® PLS62-W Wireless Module for the latest
Eseye Updater on page�60 and Downloading the software update onto the modem on
the previous page.

6. Using the terminal emulator, type:

at^SJAM=4<return>

The response must include:

SJAM:
"a:/EseyeUpdater.jad","EseyeUpdater","Eseye","<version>",1,<filesize>,0,2

where:

<version> is the latest version of the Eseye Updater software, for example: 2.0.6

<filesize> is the EseyeUpdater.jad filesize

7. Using Windows File Explorer, in the Module Disk (A): folder, delete the following files:

• EseyeUpdater.jad

• EseyeUpdater.jar

62 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Updating the modem software

Installing the latest software update
1. Using the Windows 10 computer, go to:

https://eseye.zendesk.com/hc/en-us/articles/360008924537

2. Download ICC_ETM_ <version>.zip, where <version> is the latest version.

3. Extract the contents to your Downloads folder.

Ensure you perform steps 4 and 5 separately, in order.

4. Copy the update folder from the extracted contents to the Module Disk (A): folder.

If you have previously updated the software, you must overwrite the existing files.

5. Copy the Update.flag file to the Module Disk (A): folder.

6. Remove power from the Cinterion® PLS62-W Wireless Module for 20 seconds.

7. Restart the Cinterion® PLS62-W Wireless Module.

The software update takes place.

8. Using a terminal emulator, type:

at^SJAM=4<return>

The response must include:

SJAM:
"a:/EseyeUpdater.jad","EseyeUpdater","Eseye","<version>",1,<filesize>,0,2

where:

<version> is the latest version of the Eseye Updater software, for example: 2.0.6

<filesize> is the EseyeUpdater.jad filesize

The JRC version may differ, depending on the firmware version installed in the
terminal. We recommend that you update the Cinterion® PLS62-W Wireless Module to
the latest Thales-supported JRC firmware for Java® ME 3.2.

9. Ensure the EseyeUpdater, ETM and CertificateConfigApp versions match those listed above.

10. Delete the following files if they continue to exist in the Module Disk (A): folder:

EseyeUpdater.jad
EseyeUpdater.jar
Etm.jad
Etm.jar
CertificatesConfigApp.jad
CertificatesConfigApp.jar

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9 63

Updating the modem software

Uninstalling the Module Exchange Suite
If required, you may need to uninstall the Module Exchange Suite.

To uninstall the Module Exchange Suite:

1. In the Downloads folder, double-click MESSetup.exe.

Depending on your account set up, a User Account Control popup may appear. Select Yes.

The InstallShield Wizard appears with the options to Modify, Repair or Remove the current
installation.

2. Select Remove.

3. Select Next.

A message box appears, asking you to confirm your choice.

4. Select Yes.�

If you are currently using the files, the Files in Use page appears, listing the open applications.

5. Select Automatically close and attempt to restart applications.

6. Select OK.

The wizard closes the applications and uninstalls the Module Exchange Suite. The Uninstall
Complete page appears.

7. Select Finish to close the wizard.

64 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Updating the modem software

Updating the modem firmware using AWS
IoT jobs
At any time the AWS IoT Core Device Management service may instruct the Cinterion® PLS62-W
Wireless Module to install an OTA update by publishing a job document to the jobs/next topic.

When the Cinterion® PLS62-W Wireless Module receives a valid JSON job document, it retrieves the
firmware package from the Amazon S3 instance using a pre-signed URL within the job document.

Throughout the update process, the Cinterion® PLS62-W Wireless Module publishes status information
to AWS IoT Core. After the update completes, a SUCCEEDED status is published, and the AWS IoT Core
Device Management service marks the job as complete.

For information about jobs, see https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html.

Before you begin
Obtain the firmware image zip file from Eseye. Contact Support for more information:
support@eseye.com.

Creating a JSON job description file
1. Create a UTF-8 encoded JSON job description file for the firmware update.

The job description must contain operation and location parameters that specify which
update to apply, and where to find it.

For more information, see Example job document on the next page.

2. Upload the JSON job description file and firmware image zip file to the S3 bucket in the same
root account as the IoT things.

For more information, see https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-
objects.html

The Job process does not permit cross-region operation. You must upload the S3
bucket in the same region as the things you are updating. If you are operating across
multiple regions, upload the .zip file into an S3 bucket for each region.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9 65

Updating the modem firmware using AWS IoT jobs

Example job document
Operation Description
firmware_update Updates the ETM application on the Cinterion® PLS62-W Wireless Module.

The location parameter contains the image file URL.

The image file must exist in Eseye ImageFileName.zip format.

For example:

{
"operation":"firmware_update",
"location": "${aws:iot:s3-presigned-
url:https://s3.amazonaws.com/BucketName/ImageFileName.zip}"
}

Creating an AWS IoT custom job
1. In the left-hand AWS IoT menu, select Manage > Jobs.

2. On the Start a job for your devices page, select Create a job.

The Select a job page appears.

3. Select Create custom job.

The Create a job page appears.

4. Type in a Job ID and optional Description.

5. Under Select devices to Update, click or tap Select to view a list of Thingsthat exist in the
selected region.

6. Select one or more checkboxes alongside the things that require the firmware update.

7. Under Add a job file, select the JSON job description you created from the S3 bucket.�

8. Under Pre-sign resource URLs select I want to pre-sign my URLs and have configured my job
file.

9. Select the pre-signing role from the drop down list.

Alternatively, create a pre-signing role if required.

10. Under URL will expire at this time, select the URL expiry time from the drop-down list.

11. Leave all other settings as the default settings.

66 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Updating the modem firmware using AWS IoT jobs

12. Select Next.

13. On the Advanced configurations page, leave all settings as the default settings.

14. Select Create to create the job and start the update process.

Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9 67

Updating the modem firmware using AWS IoT jobs

Unsubscribing from AnyNet Cellular
Connectivity for AWS IoT
To cancel your AnyNet Cellular Connectivity for AWS IoT subscription:

1. Using AWS Management Console, search for AWS Marketplace Subscriptions.

2. In the AnyNet Cellular Connectivity for AWS IoT card, select Manage.

3. In the Actions drop-down list, select Cancel subscription.

A Cancel subscription message box appears, asking you to confirm that you want to cancel your
subscription.

4. Select the I understand that I will continue to be charged for all running software checkbox.

5. Select Yes, cancel subscription.

The AnyNet Cellular Connectivity for AWS IoT subscription is removed.

68 Eseye-enabled Cinterion® PLS62-W Wireless Module Developer Guide v1.9

Unsubscribing from AnyNet Cellular Connectivity for AWS IoT

Technical Support: Sales:
UK (Head office): +44 1483 802503

France: +33 9 87 67 53 37

Australia: +61 8 9551 5200

USA: +1 484-935-3130

Brazil: +55 11 4950-7015

Email: support@eseye.com

UK (Head office): +44 1483 802501

France: +33 9 87 67 53 36

Norway: +47 454 62 017

South Africa: +27 87 551 8200

USA: +1 512-813-0599

Brazil: +55 11 5059-1574

Email: sales@eseye.com

