

PAT9136E1-TXQT: Optical Tracking Chip

General Description

The PAT9136E1-TXQT is PixArt Imaging's latest optical tracking chip designed to enable navigation up to the speed of 5m/s on a wide range of surfaces. The chip is housed in a $6 \times 6 \times 1.35 \text{ mm}^3$ 16-pin land-grid-array (LGA) package with an integrated laser illumination that provides X-Y motion data and consistent resolution. It is suitable for motion tracking in industrial applications.

Key Features

- Performance
 - Speed of up to 5m/s
 - Working Distance to Tracking Surface range of 5 to 50mm on glossy metal surfaces^{*1}
 - Working Distance to Tracking Surface range of 10 to 27mm on glossy non-metal surfaces^{*2}
 - Typical power consumption of 16.5mA
- No lens required
- Reports accurate XY motion data

Applications

 Devices that require high speed motion detection over a wide working range

Key Parameter

Parameter	Value				
	VDD: 1.8 to 2.1 V				
Supply Voltage	VDD_VCSEL: 2.8 to 3.3 V				
	VDDIO: 1.8 to 3.3 V				
Working Distance to	5 to 50 mm *1				
Tracking Surface	5 to 50 mm* ¹				
Frame Rate (max.)	20,000 fps				
Speed (max.)	5 m/s				
Acceleration	10 g; 98 m/s ²				
Desclution (mark)	20,000 cpi;				
Resolution (max.)	7,874 count/cm				
Interface	4-Wire SPI @ 4 MHz				
Package Size (mm ³)	6 x 6 x 1.35				
Note ^{*1} : Aluminum and glos	sy staipless steel				

Note^{*1}: Aluminum and glossy stainless steel

Note^{*2}: Glossy vinyl flooring, glossy gypsum board, glossy photo paper, green ESD mat and laminated wood.

Ordering Information

Part Number	Description	Package Type	Packing Type	MOQ
PAT9136E1-TXQT	Optical Tracking Chip	16-pin LGA Package	Tube	2000

For any additional inquiries, please contact us at https://www.pixart.com

Version 0.83 | 24 Nov 2023 | 21015EN PixArt Imaging Inc. https://www.pixart.com

Table of Contents

PAT91	L36E1-TXQT: Optical Tracking Chip	1
Ger	neral Description	1
Кеу	/ Features	1
Арр	olications	1
,	/ Parameter	
	dering Information	
Table	of Contents	2
	Figures	
List of	Tables	
1.0	Introduction	
1.1		
1.2		
1.3		
2.0	Operating Specifications	
2.1		
2.2		
2.3		
2.4		
2.5		
3.0	Mechanical Specifications	
3.1	5 5	
3.2	0 0	
3.3	0	
4.0	Design Reference	
4.1		
4.2		
4.3		
4.4		
4.5	5	
	4.5.1 Recommended Operating Condition	
	4.5.2 Protective Cover Characteristics	
	4.5.3 Recommended Protective Cover Design Assembly Guide	
4.6	Assembly Guide	
	4.6.2 Assembly Recommendation	
	4.6.3 ESD Precaution	
	4.6.4 IR Reflow Soldering Profile	
4.7		
5.0	Power Management	
5.1	-	
5.2		
	5.2.1 Power On	
	5.2.2 Power Off	

PAT9136E1-TXQT Product Datasheet Optical Tracking Chip

5.3	Pov	ver State	.27
5.	3.1	State Description	.27
5.	3.2	State Diagram	.27
5.	3.3	State Transition	.28
5.4	Res	et and Shutdown State	28
5.	4.1	Power-on Reset	.29
5.	4.2	Hardware Reset	.29
5.	4.3	Software Reset	29
5.5	Rel	ated Register	.29
6.0	Serial	Port Interface Communication	.30
6.1	Sigr	nal Description	30
6.2	Chi	p Select Operation	30
6.3		tocol	
6.4	Wr	ite Operation	31
6.5		ad Operation	
6.6	Bur	st Mode	.33
6.7	Rec	quired Timing Between Read and Write Commands (t _{sxx})	34
7.0		m Control	
7.1	Sys	tem Initialization	35
7.		Initialization Flow	
7.	1.2	Performance Optimization Setting	.36
7.		Matte Textured Surface Performance Improvement Setting	
7.2	Reg	gister Access	38
7.		Register Address Mapping	
7.		Burst Read	
7.3	Out	tput	.39
7.		Motion Bit and Motion Pin Interrupt	
7.	3.2	Output Access	39
7.	3.3	Invalid Motion Data Condition	43
7.	3.4	Data Lost and Corruption	43
7.		Frame Capture Mode	
7.4	Rel	ated Register	.45
8.0	Regist	er	46
8.1	Reg	gister List	.46
8.2	Reg	gister Description	47
8.	2.1	Product ID	.47
8.	2.2	Reset and Shutdown Registers	47
8.	2.3	Operational Control	48
8.	2.4	Motion Related Registers	51
8.	2.5	Operational Check Related Registers	52
8.	2.6	Troubleshooting Related Registers	54
Revisio	n Histo	ory	.56

List of Figures

Figure 1. Block Diagram	6
Figure 2. Pin Configuration	7
Figure 3. Chip Orientation vs Chip Moving Direction	9
Figure 4. Cross Section View of Zs, Zc and ZGAP	9
Figure 5. LGA Package Outline Drawing	
Figure 6. Tube Dimension	14
Figure 7. Moisture Barrier Bag	
Figure 8. Inner Box	
Figure 9. Inner Box Label	15
Figure 10. Shipping Box	
Figure 11. Shipping Box Label	15
Figure 12. Reference Schematic	16
Figure 13. Recommended PCB Layout in mm [inch]	17
Figure 14. Tilt Definition	
Figure 15. Side View and Top View of Keep Out Area	
Figure 16. Chip with Flat Cover and Side View	
Figure 17. Cross-sectional View A-A	
Figure 18. Solder Reflow Profile	24
Figure 19. Power-on Sequence Requirement	26
Figure 20. State Diagram	
Figure 21. Transmission Protocol	
Figure 22. Write Operation	31
Figure 23. MOSI Setup and Hold Time	31
Figure 24. Read Operation	32
Figure 25. MISO Delay and Hold Time	32
Figure 26. Burst Read Timing	33
Figure 27. Timing Between Two Write Commands	34
Figure 28. Timing Between Write and Read Commands	34
Figure 29. Timing Between Read and Either Write or Subsequent Read Commands	34
Figure 30. Initialization Flow	35
Figure 31. Motion Interrupt Pin Function	39
Figure 32. Polling Method – Single Read	40
Figure 33. Polling Method – Burst Read	41
Figure 34. Motion Data Access - Interrupt Method	42
Figure 35. Example of Data Lost When Internal Buffer Reach Limit	
Figure 36. Raw Data Map	45

List of Tables

Table 1. Signal Pins Description	7
Table 2. Absolute Maximum Ratings	8
Table 3. Recommended Operating Conditions	8
Table 4. DC Electrical Specifications	
Table 5. AC Electrical Specifications	
Table 6. Resolution Variation Specification	
Table 7. Code Identification	
Table 8. Recommended Operating Condition	
Table 9. Soldering Profile	24
Table 10. Power State Description	
Table 11. State Transition	
Table 12. State of Signal Pins during Reset and After Reset	
Table 13. State of Signal Pins during Shutdown	
Table 14. 4-Wire SPI Signal Description	
Table 15. Register Map	

1.0 Introduction

1.1 Overview

The PAT9136E1-TXQT is based on Optical Navigation Technology, which measures changes in position by optically acquiring sequential picture elements and mathematically determining the direction and magnitude of movement. The chip contains a Picture Element Acquisition System (PEAS), a hard-coded Digital Signal Processing System (DSPS), and an integrated VCSEL illumination source.

The chip algorithm calculates the speed, direction, magnitude of motion and stores the motion data output information in the registers. Then, the host either uses the polling method or interrupts triggering for immediate access.

Note: Throughout this document, the PAT9136E1-TXQT is referred to as the "chip".

1.2 Terminology

Term	Description					
ESD	Electrostatic Discharge					
I/O	Input / Output					
VCSEL	Vertical Cavity Surface Emitting LASER					
срі	count per inch					
fps	frame per second					

Version 0.83 | 24 Nov 2023 | 21015EN PixArt Imaging Inc. https://www.pixart.com

1.3 Signal Description

Note: The 4 pads in Figure 2 (red boxed) must be left unconnected.

Figure 2. Pin Configuration

Table 1. Signal Pins Description

Function	Pin No.	Signal Name	Туре	Description
	8	DGND	Ground	Digital Ground
	13	AGND	Ground	Analog Ground
Power	9	VDDIO	Power	I/O power input
Supplies	11	VREG	Power	Chip power output
	12	VDD	Power	Chip power input
	15	VDD_VCSEL	Power	Chip power input
	3	NCS	Input	Chip select (Active low)
Control	4	MISO	Output	Serial data output
Interface	5 MOSI Input		Input	Serial data input
	6	SCLK	Input	Serial data clock
Functional	2	NRST	Input	Hardware reset (Active low)
I/O	7	MOTION	Output	Motion interrupt (Active low)
Cu a al al	1	VCSEL_P	Input	Laser Anode
Special	10, 14	NC	NC	No connection (floating)
Function	16	VCSEL_N	Output	Laser Cathode
Pin	17*	GND PADDLE	Ground	Bottom of LGA package must be connected to circuit ground.

2.0 Operating Specifications

2.1 Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Note
Storage Temperature	Ts	-40	85	°C	
Lead-Free Solder Temperature	Τ _Ρ		260	°C	
	VDD	-0.5	2.2	V	
Power Supply Voltage	VDD_VCSEL	-0.5	3.5	V	
	VDDIO	-0.5	3.5	V	•
I/O pin Voltage	-	-0.5	VDDIO	V	All I/O pins
ESD	ESD _{HBM}		2	kV	All pins (Human Body Model)

Notes:

1. Maximum Ratings are the maximum parameter values that can damage the device when exceeding this limit.

2. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not recommended.

2.2 Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Temperature	T _A	0		60	°C	
	VDD	1.8	1.9	2.1	V	Including supply noise
Power Supply Voltage	VDD_VCSEL	2.8	3.0	3.3	V	Including supply noise
	VDDIO	1.8	1.9	3.3	V	Including supply noise
Power Supply Rise Time	t	0.15		20		0 to VDD, VDD_VCSEL &
	t _{rt}	0.15		20	ms	VDDIO min
Supply Noise (Sinusoidal)	VNA			100	mV	Peak to peak noise voltage.
	V NA			100	111.0	10 kHz to 75 MHz
Serial Port Clock Frequency	f _{sclk}			4	MHz	50% duty cycle
Resolution	R			20,000	срі	(7874 count/cm)
			3.6	5	m/s	Glossy metal surfaces ⁴
Speed ³	S		3.6	5	m/s	Glossy non-metal surfaces ⁵
			1.0	1.5	m/s	Diffuse surface - white paper
Working Distance from top		5		50	mm	Glossy metal surfaces ⁴
of Chip to Tracking	Zs	10		27	mm	Glossy non-metal surfaces ⁵
Surface ⁷		17		21	mm	Diffuse surface - white paper
Working Distance from top		3.2		48.2	mm	Glossy metal surfaces ⁴
of 1.1mm cover to Tracking	Z _C	8.2		25.2	mm	Glossy non-metal surfaces ⁵
Surface, Z _{GAP} =0.7mm ⁷		15.2		19.2	mm	Diffuse surface - white paper
Frame Rate	F _R			20,000	fps	
Acceleration	а			98	m/s ²	

Notes:

- 1. PixArt does not guarantee the performance of the system beyond the recommended operating condition limits.
- 2. Chip electrical characteristics over recommended operating conditions. Typical values at VDD= 1.9V, VDD_VCSEL= 3.0V, VDDIO= 1.9V, T_A = 25°C.
- 3. Maximum speed can be achieved when chip moves at 45° while typical speed can be achieved when chip moves at 0° and 90°. Below is the diagram of chip orientation vs chip moving direction.

Figure 3. Chip Orientation vs Chip Moving Direction

- 4. Tested on Aluminum and stainless steel.
- 5. Tested on Glossy vinyl flooring, glossy gypsum board, glossy photo paper, green ESD mat and laminated wood.
- 6. For surfaces such as matte textured tiles, user may execute section 7.1.3 in order to improve the tracking performance. Please note that with the implementation of section 7.1.3, Resolution Variation $RV_S\%$ (over speed) will increase to 5%.
- 7. Zs, Zc and Z_{GAP} . Do refer to section 4.5 for protective cover design.

Figure 4. Cross Section View of Zs, Zc and ZGAP

Version 0.83 | 24 Nov 2023 | 21015EN PixArt Imaging Inc. https://www.pixart.com

2.3 DC Characteristics

Table 4. DC Electrical Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
	I		14.5		mA	Average current (chip only)
Supply Current	I _{DD_RUN}					No load on MISO, MOTION
Supply Current	I _{DD_VCSEL_}		2		mA	Average current with laser
	RUN		Z		ma	pulsing @ 20k fps
Shutdown state Current	I _{PD}		4		μΑ	
Input Low Voltage	V _{IL}			0.3 x VDDIO	V	SCLK, MOSI, NCS
Input High Voltage	V _{IH}	0.7 x VDDIO			V	SCLK, MOSI, NCS
Input Hysteresis	V_{I_HYS}		100		mV	SCLK, MOSI, NCS
			. 1	. 10		V _{in} = VDDIO or 0V,
Input Leakage Current	I _{LEAK}		±1	± 10	μA	SCLK, MOSI, NCS
Output Low Valtage				0.45	N	I _{OUT} = 1mA for MISO
Output Low Voltage	V _{OL}			0.45	V	I _{OUT} = 0.1mA for MOTION
Output Lligh Valtage					V	I _{OUT} = -1mA for MISO
Output High Voltage	V _{OH}	VDDIO -0.45			V	Iout= -0.1mA for MOTION

Note: Electrical Characteristics are defined under recommended operating conditions. Typical values at VDD= 1.9V, VDD_VCSEL= 3.0V, VDDIO= 1.9V, T_A= 25°C.

2.4 AC Characteristics

Table 5. AC Electrical Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Motion Delay After Reset	t _{MOT-RST}	120			ms	From reset to valid motion, assuming
Time						motion is present.
Shutdown State Time	t _{stdwn}			500	ms	From Shutdown State active to low
	CSTERVIN			500		current.
						From Shutdown State inactive to
Wake up from Shutdown						valid motion.
State Time	t _{wakeup}	120			ms	Note: A RESET must be asserted after
State fille						a Shutdown State. Refer to section
						5.3, also note t _{MOT-RST.}
MISO Rise Time	t _{r-MISO}		6		ns	C _L = 20pF
MISO Fall Time	t _{f-MISO}		6		ns	C _L = 20pF
						From SCLK falling edge to MISO data
MISO Delay After SCLK	t _{DLY-MISO}			35	ns	valid.
						C _L = 20pF.
MISO Hold Time	t _{hold-MISO}	25			ns	Data held until next falling SCLK edge.
MOSI Hold Time	+	٦F			20	Amount of time data is valid after
MOSI Hold Time	t _{hold-MOSI}	25			ns	SCLK rising edge.
MOSI Setup Time	t _{setup-MOSI}	25			ns	From data valid to SCLK rising edge.

PAT9136E1-TXQT Product Datasheet

			_			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
SPI Time Between Write Commands	t _{sww}	5			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second data byte.
SPI Time between Write and Read Commands	t _{swr}	5			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second address byte.
SPI Time between Read and Subsequent Commands	t _{srw,} t _{srr}	2			μs	From rising SCLK for last bit of the first data byte, to falling SCLK for the first bit of the address byte of the next command.
SPI Read Address-Data Delay	t _{srad}	2			μs	From rising SCLK for last bit of the address byte, to falling SCLK for first bit of data being read.
NCS Inactive After Motion Burst	t _{BEXIT}	500			ns	Minimum NCS inactive time after motion burst before next SPI usage
NCS To SCLK Active	t _{NCS-SCLK}	120			ns	From last NCS falling edge to first SCLK rising edge.
SCLK To NCS Inactive (For Read Operation)	t _{sclk-ncs}	120			ns	From last SCLK rising edge to NCS rising edge, for valid MISO data transfer.
SCLK To NCS Inactive (For Write Operation)	t _{sclk-ncs}	1	C		μs	From last SCLK rising edge to NCS rising edge, for valid MOSI data transfer.
NCS To MISO High-Z	t _{NCS-MISO}			500	ns	From NCS rising edge to MISO high-Z state.
MOTION Rise Time	t _{r-MOTION}		300		ns	C _L = 20pF
MOTION Fall Time	t _{f-MOTION}		300		ns	C _L = 20pF
Input Capacitance	Cin		10		рF	SCLK, MOSI, NCS.
Load Capacitance	CL			20	рF	MISO, MOTION
	Грат			70	mA	Maximum supply current during the supply ramp from OV to VDD with min. 150 µs and max. 20 ms rise time (does not include charging currents for bypass capacitors).
Transient Supply Current	Ι _{υστιο}			60	mA	Maximum supply current during the supply ramp from OV to VDDIO with min. 150 µs and max. 20 ms rise time (does not include charging currents for bypass capacitors).

Note: Electrical Characteristics are defined under recommended operating conditions. Typical values at VDD = 1.9V, VDD_VCSEL= 3.0V, VDDIO= 1.9V, T_A= 25° C.

2.5 Performance Specification

Table 6. Resolution Variation Specification

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Resolution Variation*	RV		1		%	At constant Speed and Working Distance from Tracking Surface @ 787 count/ cm.
Resolution Variation* (Over Height)	RV _H		3		%	At constant Speed, across Working Distance from Tracking Surface range @ 787 count/ cm.
Resolution Variation* (Over Speed)	RVs		3		%	At constant Working Distance from Tracking Surface, up to max. Speed @ 787 count/ cm.

Note: *: Resolution Variation, RV = $\frac{(Rmax - Rmin)}{(Raverage) \times 2} \times 100\%$, chip mounted and tested at 45°.

3.0 Mechanical Specifications

3.1 Package Marking

Refer to Figure 2. Pin Configuration for the code marking location on the device package.

Table 7. Code Identification

Label	Marking	Description	
Product Number	P9136	Part number label	
		Y: Year	
Date Code	YWX	W: Week	
		X: Reserved as PixArt reference	

3.2 LGA Package Outline Drawing

Note: It is advised that normal static discharge precautions be taken in handling and assembling of this component to prevent damage and/or degradation which may be induced by ESD.

Figure 5. LGA Package Outline Drawing

3.3 Packing Information

Parameter	Description
Part Number	PAT9136E1-TXQT
Package Type	16 Pins LGA
Tube Quantity	80 pcs
Packing	Vacuum Pack
Inner Box Quantity	2000 units
Shipping Box Quantity	24,000 units
Inner box size	89 x 540 x 58 mm ³
Shipping Box size	310 x 560 x 270 mm ³

Top View

Side View

Tube

Material: CLEAR PVC ANTISTATIC COATED

Marking: As above and add "MADE IN THAILAND" with ESD logo, PVC recycle logo and "Good" at center of tube. Tolerance: ± 0.15mm unless specify.

Units are in mm.

Figure 6. Tube Dimension

Figure 7. Moisture Barrier Bag

Figure 8. Inner Box

Figure 9. Inner Box Label

Figure 10. Shipping Box

P*M***I** PixArt Imaging

PART NO : PAT9136E1-TXQT

QA :

Figure 11. Shipping Box Label

4.0 Design Reference

4.1 General Reference Schematic

4.2 Recommended PCB Foot Print

Note: Bottom center pad of LGA package must be connected to circuit ground

4.3 Chip Assembly Tilt

For optimal performance, there should be minimal tilt to the assembly of the chip on the PCB. The tilt should not be more than 3 degrees for trackable surfaces.

If the tilt angle is larger than 3 degrees, the Resolution Variation % will increase significantly over the working range stated in Table 3.

Chip Tilt Angles are defined per below drawings from view A and view B.

Figure 14. Tilt Definition

Version 0.83 | 24 Nov 2023 | 21015EN

SEE. FEEL. TOUCH.

4.4 Keep Out Area

A keep out area of 30° angle is recommended to ensure the optical path of the chip is not blocked.

The 30° angle is from the top of the protective cover for the chip.

4.5 Recommended Protective Cover Characteristic and Design

For optimum performance of PAT9136E1-TXQT when used with protective cover, below are guidelines on the design and characteristics of the protective cover.

4.5.1 Recommended Operating Condition

Table 8. Recommended Operating Condition

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Z_GAP (Cover Bottom to	7			0.7	mm	Measured from bottom of cover to chip
top of the chip)	Z _{GAP}			0.7	mm	top surface

4.5.2 Protective Cover Characteristics

- Based on the operating principle of the chip, the wavelength range of 800 to 900 nm is critical to the chip's performance. As such, the recommended protective cover material is double sided AR coating with transmissivity of >97% over wavelength of 800 to 900nm.
- Protective cover holder below is used to hold the protective cover which can be custom made per customer's requirement
- Both sides of the cover are coated with anti-reflective material.
- Recommended thickness for the cover is 1.1±0.1mm and placed above the chip as below:

4.5.3 Recommended Protective Cover Design

Cross-sectional view in Figure 17 below shows the recommended protective cover design, which is with the cover sitting above the chip (example below is with maximum Z_{GAP} of 0.7mm). Dimensions d (gaps between chip and cover holder) just need to be larger than the chip when mounted on the customer PCB.

Dimension	Value
Cover Thickness	1.10mm
Z _{GAP} between chip and cover	0.70mm
Chip Thickness	1.35mm
X/Y gap between chip and cover holder	> 0mm
Chip solder thickness	0.10mm
	Cover Thickness Z _{GAP} between chip and cover Chip Thickness X/Y gap between chip and cover holder

Figure 17. Cross-sectional View A-A

4.6 Assembly Guide

4.6.1 Handling Precaution of Moisture Sensitivity During Assembly Processes

This product is classified as moisture sensitivity device at Level 3 (MSL 3). Thus, the following moisture sensitive precaution and handling steps are required during the Assembly processes.

Storage Control of Unopened box/ Seal bag

This product is shipped in a vacuum sealed Moisture Barrier bag (MBB) together with desiccant and a moisture indicator card inside.

The shelf life in the unopened sealed bag is 12 months at storage condition of < 40° C/90% relative humidity (RH). It is advised that the vacuum sealed MBB only be opened at the START of assembly process.

Control of Opened Seal bag

After the vacuum sealed MBB is opened, the product MUST be subjected to reflow solder and PCB mounting within <u>168 hours</u> of the factory condition < 30°C/60% RH.

Control of Un-reflow Units

Any balance of un-reflow units need to be sealed back to the MBB with desiccant at < 5% RH.

The product requires Baking, before mounting, if the following conditions happen:

- Assembly floor life exceeded 168 hours after the sealed MBB is opened.
- Humidity Indicator Card (HIC) is > 10% when read at 23°C ± 5°C.

Recommended Baking condition is 125°C ± 10°C for 48 hours. Refer to IPC/JEDEC J-STD-033 for Baking procedures.

Note: The shipping Tube cannot be subjected to high temperature baking. Transfer to an appropriate container for baking.

4.6.2 Assembly Recommendation

For surface mount the chip and all other components onto PCB:

1. Reflow the entire assembly in a no-wash solder process.

Note: Recommended to generate a stencil for the reflow process.

2. Remove the protective Kapton tape on top of the chip's package, which is meant to protect the cover glass in Figure 4. from contamination.

Note: After the Kapton tape is removed, please take note to keep the cover glass (on the top of the chip's package) from contamination.

4.6.3 ESD Precaution

This chip is a sensitive device, ESD awareness is mandatory to prevent premature damage during handling.

Below are recommended procedures to prevent electrostatic discharge towards semiconductor devices:

- Equalize potentials of terminals during transportation or storage.
- Equalize the potentials of all electronic devices, work station, and operator's body that may have possible contact with the chip.
- Ensure maintaining an ESD free environment at all times. For example, maintain relative humidity in the work area to around 50%.

Operator

- Operators must wear wrist straps in contact with bare skin.
- Wear cotton or anti-static treated materials, clothing and gloves.
- Wear conductive shoes whenever a conductive mat is used.
- Do not touch the pins, hold the body of the chip instead.

Equipment and Tools

- Any electrical equipment and tool placed on the workbench must be isolated from the work bench's surface, and need to be grounded properly.
- Conductive mat (or conductive material) must be used on workbench's surface. These conductive materials must be grounded with a 1 MΩ resistor.

Transportation, Storage and Packing

Use conductive or anti-static shielding bags to store chips.

Soldering Operation

- Use a soldering iron with a grounding wire.
- During manual soldering operation, the operator must wear wrist straps.
- Do not use the solder removal pump when detaching the chip from PCB. Use solder wick or equivalent tools.

4.6.4 IR Reflow Soldering Profile

Figure 18. Solder Reflow Profile

Table 9. Soldering Profile

Parameter	Specification
Max. Rising Slope	0° to 3°C/sec
Preheat Duration (150 – 190°C), t_s	60 to 120 sec
Time above Reflow ($T_L = 220^{\circ}C$), t	30 to 60 sec
Peak Temperature, T _p	230 to 260°C
Note: T _L is the Melting Temperature	

4.7 Surface Coverage

While the chip can track on a variety of common surfaces such as glossy metal, glossy non-metal and tiles, there are some challenges to track on dark, absorptive, and very rough surfaces (highlighted in red below), where tracking performance or working range may be impacted. Refer to below figure for examples of the surfaces mentioned.

Glossy Metal	Glossy Non-Metal	Wood	Others
Aluminum	Glossy Gypsum Flooring	Laminated Wood	Dark Absorptive Art Paper
Aluminum	Glossy Gypsulli Flooring		
Glossy Stainless Steel	Glossy Grey Vinyl Flooring	Light Brown Wood	Very Rough Tiles
Black Painted Metal	Dark Granite	Dark Plywood	Dark Absoptive Rubber Mat (with or without Color Spots)
	Glossy Photo Paper	Carpet Black Carpet	Rough Vinyl Flooring (Wood Pattern)
		Crimson Carpet	Diffuse A4 Paper
	Green ESD Mat		инизе А4 гареі

Version 0.83 | 24 Nov 2023 | 21015EN

SEE. FEEL. TOUCH.

PixArt Imaging Inc. https://www.pixart.com

All rights reserved. Any portion in this paper shall not be reproduced, copied, or transformed to any other forms without permission.